Skip to main content

Resolution in Linguistic First Order Logic Based on Linear Symmetrical Hedge Algebra

  • Conference paper
  • 858 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 442)

Abstract

This paper focuses on resolution in linguistic first order logic with truth value taken from linear symmetrical hedge algebra. We build the basic components of linguistic first order logic, including syntax and semantics. We present a resolution principle for our logic to resolve on two clauses having converse linguistic truth values. Since linguistic information is uncertain, inference in our linguistic logic is approximate. Therefore, we introduce the concept of reliability in order to capture the natural approximation of the resolution inference rule.

Keywords

  • Linear Symmetrical Hedge Algebra
  • Linguistic Truth Value
  • Linguistic First Order Logic
  • Resolution
  • Automated Reasoning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-08795-5_36
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-08795-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang, C.-L., Lee, R.C.-T.: Symbolic Logic and Mechanical Theorem Proving, 1st edn. Academic Press, Inc., Orlando (1997)

    Google Scholar 

  2. Ebrahim, R.: Fuzzy logic programming. Fuzzy Sets and Systems 117(2), 215–230 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Esteva, F., Godo, L., Noguera, C.: A logical approach to fuzzy truth hedges. Information Sciences 232, 366–385 (2013)

    CrossRef  MathSciNet  Google Scholar 

  4. Ho, N.C., Wechler, W.: Extended hedge algebras and their application to fuzzy logic. Fuzzy Sets and Systems 52(3), 259 (1992)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Háek, P.: On very true. Fuzzy Sets and Systems 124(3), 329 (2001)

    CrossRef  MathSciNet  Google Scholar 

  6. Klement, E.P.: Some mathematical aspects of fuzzy sets: triangular norms, fuzzy logics, and generalized measures. Fuzzy Sets Syst. 90(2), 133–140 (1997)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Le, V.H., Liu, F., Tran, D.K.: Fuzzy linguistic logic programming and its applications. Theory Pract. Log. Program. 9(3), 309–341 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Lee, R.C.T.: Fuzzy logic and the resolution principle. J. ACM 19(1), 109–119 (1972)

    CrossRef  MATH  Google Scholar 

  9. Mondal, B., Raha, S.: Approximate reasoning in fuzzy resolution. In: 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), pp. 1–6 (August 2012)

    Google Scholar 

  10. Nguyen, C.H., Wechler, W.: Hedge Algebras: An Algebraic Approach in Struture of Sets of Linguistic Truth Values. Fuzzy Sets and Syst. 35, 281–293 (1990)

    Google Scholar 

  11. Nguyen, T.-M.-T., Vu, V.-T., Doan, T.-V., Tran, D.-K.: Resolution in linguistic propositional logic based on linear symmetrical hedge algebra. In: Huynh, V.N., Denoeux, T., Tran, D.H., Le, A.C., Pham, B.S. (eds.) KSE 2013, Part I. AISC, vol. 244, pp. 337–350. Springer, Heidelberg (2014)

    Google Scholar 

  12. Phuong, L.A., Khang, T.D.: A deductive method in linguistic reasoning. In: 2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering (URKE), pp. 137–140 (2012)

    Google Scholar 

  13. Phuong, L.A., Khang, T.D.: Linguistic reasoning based on generalized modus ponens with linguistic modifiers and hedge moving rules. In: 2012 International Conference on Fuzzy Theory and it’s Applications (iFUZZY), pp. 82–86 (2012)

    Google Scholar 

  14. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)

    CrossRef  MATH  Google Scholar 

  15. Shen, Z., Ding, L., Mukaidono, M.: Fuzzy resolution principle. In: Proceedings of the Eighteenth International Symposium on Multiple-Valued Logic, pp. 210–215 (1988)

    Google Scholar 

  16. Smutná-Hliněná, D., Vojtáš, P.: Graded many-valued resolution with aggregation. Fuzzy Sets and Systems 143(1), 157–168 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Tran, D.-K., Vu, V.-T., Doan, T.-V., Nguyen, M.-T.: Fuzzy linguistic propositional logic based on refined hedge algebra. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–8 (2013)

    Google Scholar 

  18. Vojtás, P.: Fuzzy logic programming. Fuzzy Sets and Systems 124(3), 361–370 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Vychodil, V.: Truth-depressing hedges and bl-logic. Fuzzy Sets and Systems 157(15), 2074 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. Weigert, T.J., Tsai, J.-P., Liu, X.: Fuzzy operator logic and fuzzy resolution. J. Autom. Reasoning 10(1), 59–78 (1993)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Nguyen, TMT., Vu, VT., Doan, TV., Tran, DK. (2014). Resolution in Linguistic First Order Logic Based on Linear Symmetrical Hedge Algebra. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2014. Communications in Computer and Information Science, vol 442. Springer, Cham. https://doi.org/10.1007/978-3-319-08795-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08795-5_36

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08794-8

  • Online ISBN: 978-3-319-08795-5

  • eBook Packages: Computer ScienceComputer Science (R0)