Skip to main content

A Characterization of the 2-Additive Symmetric Choquet Integral Using Trinary Alternatives

  • Conference paper
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2014)

Abstract

In a context of Multiple Criteria Decision Aid, we present some necessary and sufficient conditions to obtain a symmetric Choquet integral compatible with some preferences on a particular set of alternatives. These axioms are based on the notion of strict cycle and the MOPI conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ah-Pine, J., Mayag, B., Rolland, A.: Identification of a 2-additive bi-capacity using mathematical programming. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) ADT 2013. LNCS, vol. 8176, pp. 15–29. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Bouyssou, D., Couceiro, M., Labreuche, C., Marichal, J.-L., Mayag, B.: Using choquet integral in machine learning: What can mcda bring? In: DA2PL 2012 Workshop: From Multiple Criteria Decision Aid to Preference Learning, Mons, Belgique (2012)

    Google Scholar 

  3. Grabisch, M.: k-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems 92, 167–189 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Grabisch, M., Labreuche, C.: Fuzzy measures and integrals in MCDA. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 565–608. Springer (2005)

    Google Scholar 

  5. Grabisch, M., Labreuche, C.: The symmetric and asymmetric Choquet integrals on finite spaces for decision making. Statistical Papers 43, 37–52 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Grabisch, M., Labreuche, C.: A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. 4OR 6, 1–44 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Grabisch, M., Labreuche, C., Vansnick, J.-C.: On the extension of pseudo-Boolean functions for the aggregation of interacting bipolar criteria. Eur. J. of Operational Research 148, 28–47 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Grabisch, M., Labreuche, C.: Bi-capacities-I: definition, Möbius transform and interaction. Fuzzy Sets and Systems 151(2), 211–236 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grabisch, M., Labreuche, C.: Bi-capacities-II: the Choquet integral. Fuzzy Sets and Systems 151(2), 237–259 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grabisch, M., Labreuche, C.: Fuzzy measures and integrals in MCDA. In: Multiple Criteria Decision Analysis: State of the Art Surveys. Int. Series in Op. Res. & Manag. Sci., vol. 78, pp. 563–604. Springer, New York (2005)

    Google Scholar 

  11. Labreuche, C., Grabisch, M.: The Choquet integral for the aggregation of interval scales in multicriteria decision making. Fuzzy Sets and Systems 137, 11–26 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mayag, B., Grabisch, M., Labreuche, C.: A characterization of the 2-additive Choquet integral through cardinal information. Fuzzy Sets and Systems 184(1), 84–105 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mayag, B., Grabisch, M., Labreuche, C.: A representation of preferences by the Choquet integral with respect to a 2-additive capacity. Theory and Decision 71(3), 297–324 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mayag, B., Rolland, A., Ah-Pine, J.: Elicitation of a 2-additive bi-capacity through cardinal information on trinary actions. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012, Part IV. CCIS, vol. 300, pp. 238–247. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Murofushi, T., Soneda, S.: Techniques for reading fuzzy measures (III): interaction index. In: 9th Fuzzy System Symposium, Sapporo, Japan, pp. 693–696 (May 1993) (in Japanese)

    Google Scholar 

  16. Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games. Annals of Mathematics Studies, vol. II(28), pp. 307–317. Princeton University Press (1953)

    Google Scholar 

  17. Simon, H.: Rational choice and the structure of the environment. Psychological Review 63(2), 129–138 (1956)

    Article  Google Scholar 

  18. Slovic, P., Finucane, M., Peters, E., MacGregor, D.G.: The affect heuristic. In: Gilovitch, T., Griffin, D., Kahneman, D. (eds.) Heuristics and biases: the Psychology of Intuitive Judgment, pp. 397–420. Cambridge University Press (2002)

    Google Scholar 

  19. Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. J. of Risk and Uncertainty 5, 297–323 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mayag, B. (2014). A Characterization of the 2-Additive Symmetric Choquet Integral Using Trinary Alternatives. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2014. Communications in Computer and Information Science, vol 442. Springer, Cham. https://doi.org/10.1007/978-3-319-08795-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08795-5_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08794-8

  • Online ISBN: 978-3-319-08795-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics