Skip to main content

Radiation Exposure to the Patient and the Urologist

  • Chapter
  • First Online:

Abstract

Patients with ureteral stones are at significant risk for radiation from both diagnostic imaging and fluoroscopy used in the operating room at the time of surgery. Surgeons and operating room staff are also at risk for exposure from fluoroscopy. Non-contrast computed tomography exposes patients to the greatest amount of radiation from diagnostic imaging. In non-obese patients with flank pain, low dose non-contrast computed tomography should be performed for the diagnosis of ureteral stones to reduce radiation exposure. In the operating room, fluoroscopy can expose patients to as much or greater amounts of radiation than diagnostic imaging. Obesity can lead to increased radiation exposure from both diagnostic imaging and fluoroscopy. To reduce radiation exposure in the operating room, the principles of As Low As Reasonably Achievable should be followed. Increased awareness of radiation doses to both the patients and staff can help physicians reduce overall radiation exposure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mettler Jr FA, Thomadsen BR, Bhargavan M, Gilley DB, Gray JE, Lipoti JA, McCrohan J, Yoshizumi TT, Mahesh M. Medical radiation exposure in the U.S. in 2006: preliminary results. Health Phys. 2008;95(5):502–7.

    Article  CAS  PubMed  Google Scholar 

  2. Brenner DJ, Hall EJ. Computed tomography–an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.

    Article  CAS  PubMed  Google Scholar 

  3. Berrington de González A, Mahesh M, Kim KP, Bhargavan M, Lewis R, Mettler F, Land C. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med. 2009;169(22):2071–7.

    Article  PubMed  Google Scholar 

  4. Westphalen AC, Hsia RY, Maselli JH, Wang R, Gonzales R. Radiological imaging of patients with suspected urinary tract stones: national trends, diagnoses, and predictors. Acad Emerg Med. 2011;18(7):699–707.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ferrandino MN, Bagrodia A, Pierre SA, et al. Radiation exposure in the acute and short-term management of urolithiasis at 2 academic centers. J Urol. 2009;181(2):668–72; discussion 673.

    Article  PubMed  Google Scholar 

  6. Lipkin ME, Preminger GM. Imaging techniques for stone disease and methods for reducing radiation exposure. Urol Clin North Am. 2013;40(1):47–57.

    Article  PubMed  Google Scholar 

  7. Niemann T, Kollmann T, Bongartz G. Diagnostic performance of low-dose CT for the detection of urolithiasis: a meta-analysis. AJR Am J Roentgenol. 2008;191(2):396–401.

    Article  PubMed  Google Scholar 

  8. Astroza GM, Neisius A, Wang AJ, et al. Radiation exposure in the follow-up of patients with urolithiasis comparing digital tomosynthesis, non-contrast CT, standard KUB, and IVU. J Endourol. 2013;27(10):1187–91.

    Article  PubMed  Google Scholar 

  9. Fulgham PF, Assimos DG, Pearle MG, Preminger GM. Clinical effectiveness protocols for imaging in the management of ureteral calculous disease: AUA technology assessment. J Urol. 2013;189(4):1203–13.

    Article  PubMed  Google Scholar 

  10. Neisius A, Wang AJ, Wang C, et al. Radiation exposure in urology: a genitourinary catalogue for diagnostic imaging. J Urol. 2013;190(6):2117–23.

    Article  PubMed  Google Scholar 

  11. Kim BS, Hwang IK, Choi YK, et al. Low-dose and standard-dose unenhanced helical computed tomography for the assessment of acute renal colic: prospective comparative study. Acta Radiol. 2005;46(7):756–63.

    Article  PubMed  Google Scholar 

  12. Poletti PA, Platon A, Rutschmann OT, et al. Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. AJR Am J Roentgenol. 2007;188(4):927–33.

    Article  PubMed  Google Scholar 

  13. Jellison FC, Smith JC, Heldt JP, et al. Effect of low dose radiation computerized tomography protocols on distal ureteral calculus detection. J Urol. 2009;182(6):2762–7.

    Article  PubMed  Google Scholar 

  14. Mulkens TH, Daineffe S, De Wijngaert R, et al. Urinary stone disease: comparison of standard-dose and low-dose with 4D MDCT tube current modulation. Am J Roentgenol. 2007;188(2):553–62.

    Article  Google Scholar 

  15. Wang AJ, Nguyen G, Toncheva G, et al. Radiation exposure from non-contrast CT, digital tomosynthesis, and standard KUB and tomograms. J Endourol. 2011;25(S1):A304–305.

    Google Scholar 

  16. Fulgham PF, Assimos DG, Pearle MS, Preminger GM. Clinical effectiveness protocol for imaging in the management of ureteral calculous disease: AUA technology assessment. J Urol. 2012;189(4):1203–13. [cited 2014 June 1]. https://www.auanet.org/common/pdf/education/clinical-guidance/Imaging-Assessment.pdf.

  17. Huang GO, Engebretsen SR, Smith JC, Wallner CL, Culpepper DJ, Creech JD, Ng CC, Mai AT, Chung CS, Olgin G, Arnold 2nd DC, Baldwin DD. Detection of uric acid stones in the ureter using low- and conventional-dose computed tomography. Urology. 2014;4295(14):00180. epub April 17, 2014.

    Google Scholar 

  18. Pooler BD, Lubner MG, Kim DH, Ryckman EM, Sivalingam S, Tang J, Nakada SY, Chen GH, Pickhardt PJ. Prospective trial for the detection of urolithiasis at ultra-low-dose (sub-mSv) non-contrast CT: direct comparison against routine low-dose reference standard. J Urol. 2014;5347(14):03621–0. epub May 21, 2104.

    Google Scholar 

  19. Kluner C, Hein PA, Gralla O, et al. Does ultra-low-dose CT with a radiation dose equivalent to that of KUB suffice to detect renal and ureteral calculi? J Comput Assist Tomogr. 2006;30(1):44–50.

    Article  PubMed  Google Scholar 

  20. Mermuys K, De Geeter F, Bacher K, et al. Digital tomosynthesis in the detection of urolithiasis: diagnostic performance and dosimetry compared with digital radiography with MDCT as the reference standard. AJR Am J Roentgenol. 2010;195(1):161–7.

    Article  PubMed  Google Scholar 

  21. Mettler Jr FA, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248(1):254–63.

    Article  PubMed  Google Scholar 

  22. Neisius A, Astroza GM, Kuntz NJ, et al. Specific organ doses utilizing a new technique for imaging nephrolithiasis: digital tomosynthesis. J Urol. 2013;189(4):e852, supplement.

    Article  Google Scholar 

  23. Mancini JG, Raymundo EM, Lipkin M, et al. Factors affecting patient radiation exposure during percutaneous nephrolithotomy. J Urol. 2010;184(6):2373–7.

    Article  PubMed  Google Scholar 

  24. Tepeler A, Binbay M, Yuruk E, et al. Factors affecting the fluoroscopic screening time during percutaneous nephrolithotomy. J Endourol. 2009;23(11):1825–9.

    Article  PubMed  Google Scholar 

  25. Lipkin ME, Mancini JG, Toncheva G, et al. Organ-specific radiation dose rates and effective dose rates during percutaneous nephrolithotomy. J Endourol. 2012;26(5):439–43.

    Article  PubMed  Google Scholar 

  26. Geterud K, Larsson A, Mattsson S. Radiation dose to patients and personnel during fluoroscopy at percutaneous renal stone extraction. Acta Radiol. 1989;30(2):201–5.

    Article  CAS  PubMed  Google Scholar 

  27. Hellawell GO, Mutch SJ, Thevendran G, et al. Radiation exposure and the urologist: what are the risks? J Urol. 2005;174(3):948–52; discussion 952.

    Article  CAS  PubMed  Google Scholar 

  28. Safak M, Olgar T, Bor D, et al. Radiation doses of patients and urologists during percutaneous nephrolithotomy. J Radiol Prot. 2009;29(3):409–15.

    Article  CAS  PubMed  Google Scholar 

  29. International Commission on Radiological Protection. The 2007 Recommendations of the International Commission on Radiological Protection, ICRP Publication 103, vol. 37. Oxford: Ann ICRP; 2007. p. 1–332.

    Google Scholar 

  30. Blair B, Huang G, Arnold D, et al. Reduced fluoroscopy protocol for percutaneous nephrostolithotomy: feasibility, outcomes and effects on fluoroscopy time. J Urol. 2013;190(6):2112–6.

    Article  PubMed  Google Scholar 

  31. Lipkin ME, Mancini JG, Zilberman DE, et al. Reduced radiation exposure with the use of an air retrograde pyelogram during fluoroscopic access for percutaneous nephrolithotomy. J Endourol. 2011;25(4):563–7.

    Article  PubMed  Google Scholar 

  32. Agarwal M, Agrawal MS, Jaiswal A, et al. Safety and efficacy of ultrasonography as an adjunct to fluoroscopy for renal access in percutaneous nephrolithotomy (PCNL). BJU Int. 2011;108(8):1346–9.

    Article  PubMed  Google Scholar 

  33. Basiri A, Ziaee AM, Kianian HR, et al. Ultrasonographic versus fluoroscopic access for percutaneous nephrolithotomy: a randomized clinical trial. J Endourol. 2008;22(2):281–4.

    Article  PubMed  Google Scholar 

  34. Alan C, Koҫoğlu H, Ateş F, et al. Ultrasound-guided X-ray free percutaneous nephrolithotomy for treatment of simple stones in the flank position. Urol Res. 2011;39(3):205–12.

    Article  PubMed  Google Scholar 

  35. Lipkin ME, Wang AJ, Toncheva G, et al. Determination of patient radiation dose during ureteroscopic treatment of urolithiasis using a validated model. J Urol. 2012;187(3):920–4.

    Article  PubMed  Google Scholar 

  36. Hsi RS, Zamora DA, Kanal KM, Harper JD. Severe obesity is associated with 3-fold higher radiation dose rate during ureteroscopy. Urology. 2013;82(4):780–5.

    Article  PubMed  Google Scholar 

  37. Greene DJ, Tenggadjaja CF, Bowman RJ, et al. Comparison of a reduced radiation fluoroscopy protocol to conventional fluoroscopy during uncomplicated ureteroscopy. Urology. 2011;78(2):286–90.

    Article  PubMed  Google Scholar 

  38. Ngo TC, Macleod LC, Rosenstein DI, et al. Tracking intraoperative fluoroscopy utilization reduces radiation exposure during ureteroscopy. J Endourol. 2011;25(5):763–7.

    Article  PubMed  Google Scholar 

  39. Deters LA, Belanger G, Shah O, Pais VM. Ultrasound guided ureteroscopy in pregnancy. Clin Nephrol. 2013;79(2):118–23.

    Article  PubMed  Google Scholar 

  40. Perisinakis K, Damilakis J, Anezinis P, et al. Assessment of patient effective radiation dose and associated radiogenic risk from extracorporeal shock-wave lithotripsy. Health Phys. 2002;83(6):847–53.

    Article  CAS  PubMed  Google Scholar 

  41. Sandilos P, Tsalafoutas I, Koutsokalis G, et al. Radiation doses to patients from extracorporeal shock wave lithotripsy. Health Phys. 2006;90(6):583–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Lipkin MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lipkin, M.E. (2015). Radiation Exposure to the Patient and the Urologist. In: Patel, S., Nakada, S. (eds) Ureteral Stone Management. Springer, Cham. https://doi.org/10.1007/978-3-319-08792-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08792-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08791-7

  • Online ISBN: 978-3-319-08792-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics