Hybrid Recommendation in Heterogeneous Networks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8538)


The social web is characterized by a wide variety of connections between individuals and entities. A challenge for recommendation is to represent and synthesize all useful aspects of a user’s profile. Typically, researchers focus on a limited set of relations (for example, person to person ties for user recommendation or annotations in social tagging recommendation).

In this paper, we present a general approach to recommendation in heterogeneous networks that can incorporate multiple relations in a weighted hybrid. A key feature of this approach is the use of the metapath, an abstraction of a class of paths in a network in which edges of different types are traversed in a particular order. A user profile is therefore a composite of multiple metapath relations. Compared to prior work with shorter metapaths, we show that a hybrid composed of components using longer metapaths yields improvements in recommendation diversity without loss of accuracy on social tagging datasets.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamic, L., Adar, E.: Friends and neighbors on the web. Social Networks 25(3), 211–230 (2003)CrossRefGoogle Scholar
  2. 2.
    Adomavicius, G., Kwon, Y.: Improving aggregate recommendation diversity using ranking-based techniques. IEEE Transactions on Knowledge and Data Engineering 24(5), 896–911 (2012)CrossRefGoogle Scholar
  3. 3.
    Benchettara, N., Kanawati, R., Rouveirol, C.: A supervised machine learning link prediction approach for academic collaboration recommendation. In: Proceedings of the fourth ACM Conference on Recommender Systems, pp. 253–256. ACM (2010)Google Scholar
  4. 4.
    Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Burke, R., Vahedian, F.: Social web recommendation using metapaths. In: Proceedings of the Fifth ACM RecSys Workshop on Recommender Systems and the Social Web. ACM Press (2013)Google Scholar
  6. 6.
    Cai, X., Bain, M., Krzywicki, A., Wobcke, W., Kim, Y.S., Compton, P., Mahidadia, A.: Reciprocal and heterogeneous link prediction in social networks. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012, Part II. LNCS, vol. 7302, pp. 193–204. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Chen, J., Chen, G., Zhang, H.L., Huang, J., Zhao, G.: Social recommendation based on multi-relational analysis. In: International Conference on Web Intelligence and Intelligent Agent Technology, pp. 471–477 (2012)Google Scholar
  8. 8.
    Davis, D.A., Lichtenwalter, R., Chawla, N.V.: Multi-relational link prediction in heterogeneous information networks. In: ASONAM, pp. 281–288 (2011)Google Scholar
  9. 9.
    Davis, D.A., Lichtenwalter, R., Chawla, N.V.: Supervised methods for multi-relational link prediction. Social Netw. Analys. Mining 3(2), 127–141 (2013)CrossRefGoogle Scholar
  10. 10.
    Doerfel, S., Jäschke, R., Hotho, A., Stumme, G.: Leveraging publication metadata and social data into folkrank for scientific publication recommendation. In: Proceedings of the 4th ACM RecSys Workshop on Recommender Systems and the Social Web, RSWeb 2012, pp. 9–16. ACM, New York (2012)Google Scholar
  11. 11.
    Durão, F.A., Dolog, P.: A personalized tag-based recommendation in social web systems. In: Proceedings of International Workshop on Adaptation and Personalization for Web 2.0 (2009)Google Scholar
  12. 12.
    Gemmell, J., Ramezani, M., Schimoler, T., Christiansen, L., Mobasher, B.: A fast effective multi-channeled tag recommender. In: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases Discovery Challenge, Bled, Slovenia, pp. 59–63 (2009)Google Scholar
  13. 13.
    Gemmell, J., Schimoler, T., Mobasher, B., Burke, R.: Hybrid tag recommendation for social annotation systems. In: 19th ACM International Conference on Information and Knowledge Management, Toronto, Canada, pp. 829–838 (2010)Google Scholar
  14. 14.
    Gemmell, J., Schimoler, T., Mobasher, B., Burke, R.: Resource recommendation in social annotation systems: A linear-weighted hybrid approach. Journal of Computer and System Sciences 78(4), 1160–1174 (2012)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Han, J.: Mining heterogeneous information networks by exploring the power of links. In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS, vol. 5808, pp. 13–30. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Herlocker, J., Konstan, J., Riedl, J.: Explaining collaborative filtering recommendations. In: Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, pp. 241–250. ACM (2000)Google Scholar
  17. 17.
    Hong, L., Bekkerman, R., Adler, J., Davison, B.D.: Learning to rank social update streams. In: SIGIR, pp. 651–660 (2012)Google Scholar
  18. 18.
    Jeh, G., Widom, J.: Scaling personalized web search. In: WWW, pp. 271–279 (2003)Google Scholar
  19. 19.
    Kazienko, P., Musial, K., Kajdanowicz, T.: Multidimensional social network in the social recommender system. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 41(4), 746–759 (2011)CrossRefGoogle Scholar
  20. 20.
    Konstas, I., Stathopoulos, V., Jose, J.M.: On social networks and collaborative recommendation. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2009, pp. 195–202. ACM, New York (2009)Google Scholar
  21. 21.
    Kunegis, J., Lommatzsch, A.: Learning spectral graph transformations for link prediction. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 561–568. ACM, New York (2009)Google Scholar
  22. 22.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  23. 23.
    Liben-Nowell, D., Kleinberg, J.M.: The link prediction problem for social networks. In: 12th ACM International Conference on Information and Knowledge Management, pp. 556–559 (2003)Google Scholar
  24. 24.
    Lichtenwalter, R., Lussier, J.T., Chawla, N.V.: New perspectives and methods in link prediction. In: KDD, pp. 243–252 (2010)Google Scholar
  25. 25.
    McNee, S.: Meeting user information needs in recommender systems. PhD thesis, University of Minnesota (2006)Google Scholar
  26. 26.
    Mihalkova, L., Moustafa, W.E., Getoor, L.: Learning to predict web collaborations. In: WSDM Workshop on User Modeling for Web Applications (2011)Google Scholar
  27. 27.
    Rendle, S., Schmidt-Thieme, L.: Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, New York (2010)Google Scholar
  28. 28.
    Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-Based Collaborative Filtering Recommendation Algorithms. In: 10th International Conference on World Wide Web, Hong Kong, China (2001)Google Scholar
  29. 29.
    Siersdorfer, S., Sizov, S.: Social recommender systems for web 2.0 folksonomies. In: Hypertext, pp. 261–270 (2009)Google Scholar
  30. 30.
    Song, Y., Zhang, L., Giles, C.L.: Automatic tag recommendation algorithms for social recommender systems. ACM Transactions on the Web 5(1), 4 (2011)CrossRefGoogle Scholar
  31. 31.
    Sun, Y., Han, J.: Mining Heterogeneous Information Networks: Principles and Methodologies. Synthesis Lectures on Data Mining and Knowledge Discovery. Morgan & Claypool Publishers (2012)Google Scholar
  32. 32.
    Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. In: Proceedings of the 37th International Conference on Very Large Databases, pp. 992–1003 (2011)Google Scholar
  33. 33.
    Tong, H., Faloutsos, C., Pan, J.-Y.: Fast random walk with restart and its applications. In: ICDM, pp. 613–622 (2006)Google Scholar
  34. 34.
    Yu, S.J.: The dynamic competitive recommendation algorithm in social network services. Inf. Sci. 187, 1–14 (2012)CrossRefzbMATHGoogle Scholar
  35. 35.
    Yu, X., Ren, X., Sun, Y., Gu, Q., Sturt, B., Khandelwal, U., Norick, B., Han, J.: Personalized entity recommendation: a heterogeneous information network approach. In: WSDM, pp. 283–292 (2014)Google Scholar
  36. 36.
    Zhang, M., Hurley, N.: Avoiding monotony: improving the diversity of recommendation lists. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 123–130. ACM (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Center for Web IntelligenceDePaul UniversityChicagoUSA

Personalised recommendations