Skip to main content

Combining Distributional Semantics and Entity Linking for Context-Aware Content-Based Recommendation

  • Conference paper
User Modeling, Adaptation, and Personalization (UMAP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8538))

Abstract

The effectiveness of content-based recommendation strategies tremendously depends on the representation formalism adopted to model both items and user profiles. As a consequence, techniques for semantic content representation emerged thanks to their ability to filter out the noise and to face with the issues typical of keyword-based representations. This article presents Contextual eVSM (C-eVSM), a content-based context-aware recommendation framework that adopts a novel semantic representation based on distributional models and entity linking techniques. Our strategy is based on two insights: first, entity linking can identify the most relevant concepts mentioned in the text and can easily map them with structured information sources, easily triggering some inference and reasoning on user preferences, while distributional models can provide a lightweight semantics representation based on term co-occurrences that can bring out latent relationships between concepts by just analying their usage patterns in large corpora of data.

The resulting framework is fully domain-independent and shows better performance than state-of-the-art algorithms in several experimental settings, confirming the validity of content-based approaches and paving the way for several future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adomavicius, G., Mobasher, B., Ricci, F., Tuzhilin, A.: Context-aware recommender systems. AI Magazine 32(3), 67–80 (2011)

    Google Scholar 

  2. Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. 23(1), 103–145 (2005)

    Article  Google Scholar 

  3. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Recommender Systems Handbook, pp. 217–253. Springer (2011)

    Google Scholar 

  4. Cantador, I., Bellogín, A., Castells, P.: News@hand: A Semantic Web Approach to Recommending News. In: Nejdl, W., Kay, J., Pu, P., Herder, E. (eds.) AH 2008. LNCS, vol. 5149, pp. 279–283. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Codina, V., Ricci, F., Ceccaroni, L.: Semantically-enhanced pre-filtering for context-aware recommender systems. In: Proceedings of the 3rd Workshop on Context-Awareness in Retrieval and Recommendation, pp. 15–18 (2013)

    Google Scholar 

  6. Cohen, T., Widdows, D.: Empirical distributional semantics: Methods and biomedical applications. Journal of Biomedical Informatics 42(2), 390 (2009)

    Article  Google Scholar 

  7. Harris, Z.: Mathematical structures of language. John Wiley & Sons (1968)

    Google Scholar 

  8. Herlocker, J., Konstan, J.: Content-independent task-focused recommendation. IEEE Internet Computing 5(6), 40–47 (2001)

    Article  Google Scholar 

  9. Karatzoglou, A., Amatriain, X., Baltrunas, L., Oliver, N.: Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In: Proceedings of RecSys 2010, pp. 79–86. ACM (2010)

    Google Scholar 

  10. Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: State of the art and trends. In: Recommender Systems Handbook, pp. 73–105. Springer (2011)

    Google Scholar 

  11. Mitchell, T.: Machine Learning. McGraw-Hill (1997)

    Google Scholar 

  12. Musto, C.: Enhanced vector space models for content-based recommender systems. In: Proceedings of RecSys 2010, pp. 361–364. ACM (2010)

    Google Scholar 

  13. Musto, C., Semeraro, G., Lops, P., de Gemmis, M.: Random indexing and negative user preferences for enhancing content-based recommender systems. In: Huemer, C., Setzer, T. (eds.) EC-Web 2011. LNBIP, vol. 85, pp. 270–281. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Musto, C., Semeraro, G., Lops, P., de Gemmis, M.: Contextual eVSM: A content-based context-aware recommendation framework based on distributional semantics. In: Huemer, C., Lops, P. (eds.) EC-Web 2013. LNBIP, vol. 152, pp. 125–136. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Narducci, F., Musto, C., Semeraro, G., Lops, P., de Gemmis, M.: Leveraging encyclopedic knowledge for transparent and serendipitous user profiles. In: Carberry, S., Weibelzahl, S., Micarelli, A., Semeraro, G. (eds.) UMAP 2013. LNCS, vol. 7899, pp. 350–352. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Panniello, U., Gorgoglione, M.: Incorporating context into recommender systems: an empirical comparison of context-based approaches. Electronic Commerce Research 12(1), 1–30 (2012)

    Article  Google Scholar 

  17. Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun. ACM 8(10), 627–633 (1965)

    Article  Google Scholar 

  18. Turney, P., Pantel, P.: From frequency to meaning: Vector space models of semantics. J. Artif. Intell. Res (JAIR) 37, 141–188 (2010)

    MATH  MathSciNet  Google Scholar 

  19. Widdows, D.: Orthogonal negation in vector spaces for modelling word-meanings and document retrieval. In: ACL, pp. 136–143 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Musto, C., Semeraro, G., Lops, P., de Gemmis, M. (2014). Combining Distributional Semantics and Entity Linking for Context-Aware Content-Based Recommendation. In: Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, GJ. (eds) User Modeling, Adaptation, and Personalization. UMAP 2014. Lecture Notes in Computer Science, vol 8538. Springer, Cham. https://doi.org/10.1007/978-3-319-08786-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08786-3_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08785-6

  • Online ISBN: 978-3-319-08786-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics