Skip to main content

Functional Analysis of Locomotor Apparatus of Bats

  • Chapter
  • First Online:

Abstract

Various aspects of bat locomotion are considered, including terrestrial one. Wingbeat cycle and interaction of the wing with the air are discussed in detail. A new model of the shoulder girdle mobility in flight is established, which differs significantly from the common point of view. Static model of the muscular forces in the forelimb and shoulder girdle is developed for the case of mid-downstroke in forward flight. Specific features of the forelimb musculature in bats are interpreted in functional terms. The chapter includes the following subchapters: Locomotor Features of Chiropterans; Kinematics of Chiropteran Wing; Interaction of Wing with Air; Internal Biomechanics of Wing; Static Analysis of Downstroke. It is supplied with 2 grayscale and 10 colored illustrations, which include the photos of alive bats, original drawings representing kinematic and static models being considered, and additional X-ray frame sequences of the wingbeat cycle of Rousettus aegyptiacus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the upstroke of the continuous vortex gait, the downstroke muscles (e.g., the m. pectoralis) should be kept active to withstand the excess air pressure from below which results in aerodynamic lift. However, since the wings are being raised, these muscles are inevitably forcibly stretched. So, they produce negative work reducing the kinetic energy of the body.

  2. 2.

    By that time, based on the same technique, the concept of discrete gaits has been already disproved for birds, and the upstroke wake was found at their slow speeds (Spedding et al. 2003).

  3. 3.

    Such separate vortex rings with reversed rotation shed from the distal part of the wing in the upstroke were not reported in birds (Hedenström et al. 2009).

  4. 4.

    In the static equilibrium, all parts of a body are at rest or in uniform rectilinear motion. In the presence of accelerations of certain parts, D’Alembert’s principle is applicable, which states that a body would be in equilibrium under the action of all the applied forces, together with introduced virtual inertia forces opposite in direction and corresponding in magnitude to these accelerations and inertial torques similarly opposing angular accelerations. Based on this, it is possible to analyze even complex movements, having divided them into successive stages.

References

  • Adams RA, Snode ER, Shaw JB (2012) Flapping tail membrane in bats produces potentially important thrust during horizontal takeoffs and very slow flight. PLoS ONE 7(2):e32074 doi:10.1371/journal.pone.0032074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aldridge HDJN (1986) Kinematics and aerodynamics of the greater horseshoe bat, Rhinolophus ferrumequinum, in horizontal flight at various flight speeds. J Exp Biol 126(1):479–497

    CAS  PubMed  Google Scholar 

  • Aldridge HDJN (1987a) Turning flight of bats. J Exp Biol 128(1):419–425

    CAS  PubMed  Google Scholar 

  • Aldridge HDJN (1987b) Body accelerations during the wingbeat in six bat species: the function of the upstroke in thrust generation. J Exp Biol 130(1):275–293

    Google Scholar 

  • Aldridge HDJN (1988) Flight kinematics and energetics in the little brown bat, Myotis lucifugus (Chiroptera: Vespertilionidae), with reference to the influence of ground effect. J Zool Lond 216(3):507–517

    Article  Google Scholar 

  • Aldridge HDJN (1991) Vertical flight in the Greater horseshoe bat Rhinolophus ferrumequinum. J Exp Biol 157(1):183–204

    Google Scholar 

  • Altenbach JS, Hermanson JW (1987) Bat flight muscle function and the scapulohumeral lock. In: Fenton MB, Racey P, Rayner RMV (eds) Recent advances in the study of bats. Cambridge University Press, p 100–118

    Google Scholar 

  • Bullen R, McKenzie NL (2001) Bat airframe design: flight performance, stability and control in relation to foraging ecology. Austral J Zool 49(3):235–261

    Article  Google Scholar 

  • Busse R von, Hedenström A, Winter Y, Johansson LC (2012) Kinematics and wing shape across flight speed in the bat, Leptonycteris yerbabuenae. Biol Open 1(12):1226–1238

    Article  Google Scholar 

  • Davis R (1969) Wing loading in Pallid bats. J Mammal 50(1):140–144

    Article  Google Scholar 

  • Dudley R, Winter Y (2002) Hovering flight mechanics of neotropical flower bats (Phyllostomidae: Glossophaginae) in normodense and hypodense gas mixtures. J Exp Biol 205(23):3669–3677

    PubMed  Google Scholar 

  • Findley JS, Studier EH, Wilson DE (1972) Morphologic properties of bat wings. J Mammal 53(3):429–444

    Article  Google Scholar 

  • Hartman FA (1963) Some flight mechanisms of bats. Ohio J Sci 63(2):59–65

    Google Scholar 

  • Hayward B, Davis R (1964) Flight speeds in western bats. J Mammal 45(2):236–242

    Article  Google Scholar 

  • Hedenström A, Johansson LC, Spedding GR (2009) Bird or bat: comparing airframe design and flight performance. Bioinsp Biomim 4(1):015001. doi:10.1088/1748-3182/4/1/015001

    Article  PubMed  Google Scholar 

  • Hedenström A, Johansson LC, Wolf M et al (2007) Bat flight generates complex aerodynamic tracks. Science 316(5826):894–897

    Article  PubMed  Google Scholar 

  • Hermanson JW (1981) Functional morphology of the clavicle in the Pallid bat, Antrozous pallidus. J Mammal 62(4):801–805

    Article  Google Scholar 

  • Hermanson JW, Altenbach JS (1981) Functional anatomy of the primary downstroke muscles in the Pallid bat, Antrozous pallidus. J Mammal 62(4):795–800

    Article  Google Scholar 

  • Hermanson JW, Altenbach JS (1983) The functional anatomy of the shoulder of the pallid bat, Antrozous pallidus. J Mammal 64(1):62–75

    Article  Google Scholar 

  • Hermanson JW, Altenbach JS (1985) Functional anatomy of the shoulder and arm of the fruit–eating bat Artibeus jamaicensis. J Zool Lond 205(2):157–177

    Article  Google Scholar 

  • Hildebrand M (1977) Analysis of asymmetrical gaits. J Mammal 58(2):131–156

    Article  Google Scholar 

  • Hill JE, Smith JD (1984) Bats, a natural history. Univ of Texas Press, Austin

    Google Scholar 

  • Holbrook KA, Odland GF (1978) A collagen and elastic network in the wing of the bat. J Anat 126(1):21–36

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hubel TY, Hristov NI, Swartz SM, Breuer KS (2009) Time-resolved wake structure and kinematics of bat flight. Exp Fluids 46(5):933–943

    Article  Google Scholar 

  • Hubel TY, Hristov NI, Swartz SM, Breuer KS (2012) Changes in kinematics and aerodynamics over a range of speeds in Tadarida brasiliensis, the Brazilian free-tailed bat. J Roy Soc Interface 9(71):1120–1130

    Article  Google Scholar 

  • Hubel TY, Riskin DK, Swartz SM, Breuer KS (2010) Wake structure and wing kinematics: the flight of the lesser dog-faced fruit bat, Cynopterus brachyotis. J Exp Biol 213(20):3427–3440

    Article  PubMed  Google Scholar 

  • Hughes P, Rayner JMV (1993) The flight of pipistrelle bats Pipistrellus pipistrellus during pregnancy and lactation. J Zool Lond 230(4):541–555

    Article  Google Scholar 

  • Iriarte-Díaz J, Riskin DK, Breuer KS, Swartz SM (2012) Kinematic plasticity during flight in fruit bats: individual variability in response to loading. PLoS ONE 7(5):e36665. doi:10.1371/journal.pone.0036665

    Article  PubMed Central  PubMed  Google Scholar 

  • Iriarte-Díaz J, Riskin DK, Willis DJ et al (2011) Whole-body kinematics of a fruit bat reveal the influence of wing inertia on body accelerations. J Exp Biol 214(9):1546–1553

    Article  PubMed  Google Scholar 

  • Iriarte-Díaz J, Swartz SM (2008) Kinematics of slow turn maneuvering in the fruit bat Cynopterus brachyotis. J Exp Biol 211(21):3478–3489

    Article  PubMed  Google Scholar 

  • Kokshaysky NV (1979) Tracing the wake of a flying bird. Nature 279(5709):146–148

    Article  Google Scholar 

  • Kovtun MF, Moroz VF (1973) Study of the bioelectric activity of the shoulder girdle muscles in Eptisicus serotinus Schreb. (Chiroptera). Dokl AN SSSR 210:1481–1484 (in Russian)

    Google Scholar 

  • Lawrence MJ (1969) Some observations on non-volant locomotion in vespertilionid bats. J Zool Lond 157(3):309–317

    Article  Google Scholar 

  • MacAyeal LC, Riskin DK, Swartz SM, Breuer KS (2011) Climbing flight performance and load carrying in lesser dog-faced fruit bats (Cynopterus brachyotis). J Exp Biol 214(5):786–793

    Article  PubMed  Google Scholar 

  • Maniakas I, Youlatos D (2012) Myological adaptations to fast enduring flight in European free-tailed bats, Tadarida teniotis (Molossidae, Chiroptera). Ital J Zool 79(4):574–581

    Article  Google Scholar 

  • Muijres FT, Henningsson P, Stuiver M, Hedenström A (2012a) Aerodynamic flight performance in flap-gliding birds and bats. J Theor Biol 306:120–128

    Article  PubMed  Google Scholar 

  • Muijres FT, Johansson LC, Barfield R et al (2008) Leading-edge vortex improves lift in slow-flying bats. Science 319(5867):1250–1253

    Article  CAS  PubMed  Google Scholar 

  • Muijres FT, Johansson LC, Bowlin MS et al (2012b) Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds. PLoS ONE 7(5):e37335. doi:10.1371/journal.pone.0037335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muijres FT, Johansson LC, Winter Y, Hedenström A (2011) Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization. J R Soc Interface 8(63):1418–1428

    Article  PubMed Central  PubMed  Google Scholar 

  • Neuweiler G (2000) The biology of bats. Oxford University Press

    Google Scholar 

  • Norberg UM (1972) Functional osteology and myology of the wing of the dog–faced bat Rousettus aegyptiacus (E. Geoffroy) (Mammalia, Chiroptera). Z Morph Tiere 73(1):1–44

    Article  Google Scholar 

  • Norberg UM (1976a) Some advanced flight manoeuvres of bats. J Exp Biol 64(2):489–495

    Google Scholar 

  • Norberg UM (1976b) Aerodynamics, kinematics, and energetics of horizontal flapping flight in the long-eared bat Plecotus auritus. J Exp Biol 65(1):179–212

    CAS  PubMed  Google Scholar 

  • Norberg UM (1976c) Aerodynamics of hovering flight in the long-eared bat Plecotus auritus. J Exp Biol 65(2):459–470

    CAS  PubMed  Google Scholar 

  • Norberg UM, Brooke AP, Trewhella WJ (2000) Soaring and non-soaring bats of the family Pteropodidae (flying foxes, Pteropus spp. ): wing morphology and flight performance. J Exp Biol 203(3):651–664

    Google Scholar 

  • Norberg UM, Kunz TH, Steffensen JF et al (1993) The cost of hovering and forward flight in a nectar-feeding bat, Glossophaga soricina, estimated from aerodynamic theory. J Exp Biol 182(1):207–227

    CAS  PubMed  Google Scholar 

  • Norberg UM, Norberg RA (2012) Scaling of wingbeat frequency with body mass in bats and limits to maximum bat size. J Exp Biol 215(5):711–722

    Article  PubMed  Google Scholar 

  • Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Phil Trans R Soc Lond B 316(1179):335–427

    Article  Google Scholar 

  • Norberg UM, Winter Y (2006) Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers. J Exp Biol 209(19):3887–3897

    Article  Google Scholar 

  • Panyutina AA, Korzun LP, Kuznetsov AN (2010) Unique role of serratus muscle in locomotion of bats. Plecotus et al 13:5–11 (in Russian with English summary)

    Google Scholar 

  • Panyutina AA, Korzun LP, Kuznetsov AN (2011) Kinematics of the shoulder girdle in bats. Doklady Biol Sci 439:240–243

    Article  CAS  Google Scholar 

  • Panyutina AA, Kuznetsov AN, Korzun LP (2013) Kinematics of chiropteran shoulder girdle in flight. Anat Rec 296(3):382–394

    Article  CAS  Google Scholar 

  • Pennycuick CJ (1971) Gliding flight of the dog-faced bat Rousettus aegyptiacus observed in a wind tunnel. J Exp Biol 55(3):833–845

    Google Scholar 

  • Rayner JMV (1987) The mechanics of flapping flight in bats. In: Fenton MB, Racey P, Rayner JMV (eds) Recent advances in the study of bats. Cambridge University Press, p 23–42

    Google Scholar 

  • Rayner JMV, Aldridge HDJN (1985) Three-dimensional reconstruction of animal flight paths and the turning flight of microchiropteran bats. J Exp Biol 118(1):247–265

    Google Scholar 

  • Riskin DK, Bahlman JW, Hubel TY et al (2009) Bats go head-under-heels: the biomechanics of landing on a ceiling. J Exp Biol 212(7):945–953

    Article  PubMed  Google Scholar 

  • Riskin DK, Bergou A, Breuer KS, Swartz SM (2012) Upstroke wing flexion and the inertial cost of bat flight. Proc Roy Soc B 279(1740):2945–2950

    Article  Google Scholar 

  • Riskin DK, Hermanson JW (2005) Independent evolution of running in vampire bats. Nature 434(7031):292

    Article  CAS  PubMed  Google Scholar 

  • Riskin DK, Iriarte-Díaz J, Middleton KM et al (2010) The effect of body size on the wing movements of pteropodid bats, with insights into thrust and lift production. J Exp Biol 213(23):4110–4122

    Article  PubMed  Google Scholar 

  • Riskin DK, Parsons S, Schutt WA Jr et al (2006) Terrestrial locomotion of the New Zealand short-tailed bat Mystacina tuberculata and the common vampire bat Desmodus rotundus. J Exp Biol 209(9):1725–1736

    Article  PubMed  Google Scholar 

  • Riskin DK, Willis DJ, Iriarte-Díaz J et al (2008) Quantifying the complexity of bat wing kinematics. J Theor Biol 254(3):604–615

    Article  PubMed  Google Scholar 

  • Schlosser-Sturm E, Schliemann H (1995). Morphology and function of the shoulder joint of bats (Mammalia: Chiroptera). J Zool Syst Evol Res 33(2):88–98

    Google Scholar 

  • Spedding GR, Rosén M, Hedenström A (2003) A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds. J Exp Biol 206(14):2313–2344

    Article  CAS  PubMed  Google Scholar 

  • Swartz SM, Bennett MB, Carrier DR (1992) Wing bone stresses in free flying bats and the evolution of skeletal design for flight. Nature 359(6397):726–729

    Article  CAS  PubMed  Google Scholar 

  • Swartz SM, Bishop K, Aguirre M-FI (2006) Dynamic complexity of wing form in bats: implications for flight performance. In: Zubaid A, McCracken GF, Kunz TH (eds) Functional and evolutionary ecology of bats. Oxford University Press, p 110–130

    Google Scholar 

  • Swartz SM, Groves MS, Kim HD, Walsh WR (1996) Mechanical properties of bat wing membrane skin. J Zool Lond 239(2):357–378

    Article  Google Scholar 

  • Swartz SM, Iriarte-Díaz J, Riskin DK et al (2007) Wing structure and the aerodynamic basis of flight in bats. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 8–11 January 2007

    Google Scholar 

  • Swartz SM, Iriarte-Díaz J, Riskin DK, Breuer KS (2012) A bird? A plane? No, it’s a bat: An introduction to the biomechanics of bat flight. In: Gunnell GF, Simmons NB (eds) Evolutionary history of bats: fossils, molecules and morphology. Cambridge University Press, p 317–352

    Google Scholar 

  • Swartz SM, Middleton KM (2008) Biomechanics of the bat limb skeleton: scaling, material properties and mechanics. Cells Tissues Organs 187(1):59–84

    Article  PubMed  Google Scholar 

  • Thollesson M, Norberg UM (1991) Moments of inertia of bat wings and body. J Exp Biol 158(1):19–35

    Google Scholar 

  • Thomas ALR, Jones G, Rayner JMV, Hughes PM (1990) Intermittent gliding flight in the pipistrelle bat (Pipistrellus pipistrellus) (Chiroptera: Vespertilionidae). J Exp Biol 149(1):407–416

    Google Scholar 

  • Thomson SC, Brooke AP, Speakman JR (2002) Soaring behavior in the Samoan flying fox (Pteropus samoensis). J Zool Lond 256(1):55–62

    Article  Google Scholar 

  • Tian X, Iriarte- Díaz J, Middleton K et al (2006) Direct measurements of the kinematics and dynamics of bat flight. Bioinsp Biomim 1(4):10–18

    Article  Google Scholar 

  • Vaughan TA (1959) Functional morphology of three bats: Eumops, Myotis, Macrotus. Univ Kansas Publ Mus Nat Hist 12(1):1–153

    Google Scholar 

  • Vaughan TA (1970) The skeletal system. In: Wimsatt WA (ed) Biology of bats, vol 1. Academic Press, New York, London, p 97–138

    Google Scholar 

  • Voigt CC (2000) Intraspecific scaling of flight power in the bat Glossophaga soricina (Phyllostomidae). J Comp Physiol B 170(5-6):403–410

    Article  CAS  PubMed  Google Scholar 

  • Voigt CC, Holderied MW (2012) High manoeuvring costs force narrow-winged molossid bats to forage in open space. J Comp Physiol B 182(3):415–424

    Article  PubMed  Google Scholar 

  • Watts P, Mitchell EJ, Swartz SM (2001) A computational model for estimating the mechanics of horizontal flapping flight in bats: model description and validation. J Exp Biol 204(16):2873–2898

    CAS  PubMed  Google Scholar 

  • Wolf M, Johansson LC, von Busse R et al (2010) Kinematics of flight and the relationship to the vortex wake of a Pallas’ long tongued bat (Glossophaga soricina). J Exp Biol 213(12):2142–2153

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra A. Panyutina .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Panyutina, A., Korzun, L., Kuznetsov, A. (2015). Functional Analysis of Locomotor Apparatus of Bats. In: Flight of Mammals: From Terrestrial Limbs to Wings. Springer, Cham. https://doi.org/10.1007/978-3-319-08756-6_5

Download citation

Publish with us

Policies and ethics