Skip to main content

Advances in Forage and Turf Biotechnology in China

  • Conference paper
  • First Online:
Molecular Breeding of Forage and Turf

Abstract

With the development and application of new technologies, biotechnology of forage and turf species has been rapid development in recent years in China, mainly in the field of omics and bioinformatics, new gene discovery and genetic engineering, and molecular marker technology. Omics and bioinformatics are essential to understand the molecular systems that underlie various plant functions. The rapid development of next-generation sequencing technology (NGS) makes genomics research undergoes a tremendous change, and promotes the development and application of bioinformatics tools. In recent years, along with the uses of genomics and bioinformatics tools, the studies of forage and turf species have developed rapidly, which reflected mainly in genomics and transcriptomics. The development of omics resources has progressed to address particular biological properties of individual forage and turf species, and also provide resources to explore new genes including new function or new sequence. The application of reverse genetics in some forage species by construction of mutant library also accelerated the new gene discovery. Genetic engineering in forage and turf species mainly focused on plant genetic improvement of biotic and abiotic stresses, quality, and transgenic vaccine. Environmental safety and broad-spectrum resistance were worth considering when the genetic engineering vector was constructed. Research in the field of molecular marker technology has been developed from the first- and second-generation to the third-generation. Molecular markers have been applied to analyze genetic diversity, marker-assisted breeding, genetic linkage map construction, QTL mapping, and germplasm or variety fingerprints. From these perspectives, we provide this review of the emerging aspects of forage and turf species researches in biotechnology based on the recent technological advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bao AK, Wang YW, Xi JJ, Liu C, Zhang JL, Wang SM (2014) Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1–1 enhances salt and drought tolerance in transgenic Lotus corniculatus L. by increasing cations accumulation. Funct Plant Biol 41:203–214

    Article  CAS  Google Scholar 

  • Chen SY, Huang X, Yan XQ, Liang Y, Wang YZ, Li XF, Peng XJ, Ma XY, Zhang LX, Cai YY, Ma T, Cheng LQ, Qi DM, Zheng HJ, Yang XH, Li XX, Liu GS (2013) Transcriptome analysis in sheepgrass (Leymus chinensis): a dominant perennial grass of the Eurasian Steppe. PLoS One 8(7):e67974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen SY, Cai YY, Zhang LX, Yan XQ, Cheng LQ, Qi DM, Zhou QY, Li XX, Liu GS (2014) Transcriptome analysis reveals common and distinct mechanisms for sheepgrass (Leymus chinensis) responses to defoliation compared to mechanical wounding. PLoS One 9(2):e89495

    Article  PubMed Central  PubMed  Google Scholar 

  • Cheng LQ, Li XX, Huang X, Ma T, Liang Y, Ma XY, Peng XJ, Jia JT, Chen SY, Chen Y, Deng B, Liu GS (2013) Overexpression of sheepgrass R1-MYB transcription factor LcMYB1 confers salt tolerance in transgenic Arabidopsis. Plant Physiol Bioch 70:252–260

    Article  CAS  Google Scholar 

  • Dong J, Wang XM, Wang Z, Gao H, Sun GZ (2012) Cloning and analysis of dihydroflavonol reductase (DFR) gene from Medicago sativa. Acta Pratac Sin 21(2):123–132

    Google Scholar 

  • Guo Q, Wang P, Ma Q, Zhang JL, Bao AK, Wang SM (2012a) Selective transport capacity for K + over Na + is linked to the expression levels of PtSOS1 in halophyte Puccinellia tenuiflora. Funct Plant Biol 39:1047–1057

    Article  CAS  Google Scholar 

  • Guo QQ, Zhang ZL, Jiang SJ, Ma JT, Xue WT, Wu YM (2012b) Expression of an Avian Influenza Virus (H5N1) Hemagglutinin gene in transgenic Lotus corniculatus. Plant Mol Biol Rep 30:1117–1124

    Article  CAS  Google Scholar 

  • Hu K, Yan XF, Li D, Tang XM, Yang H, Wang Y et al (2013) Genetic improvement of perennial ryegrass with low lignin content by silencing genes of CCR and CAD. Acta Pratac Sin 22(5):72–83

    Google Scholar 

  • Huang LK, Zhang XQ, Xie WG, Zhang J, Cheng L, Yan HD (2012) Molecular diversity and population structure of the forage grass Hemarthria compressa (Poaceae) in south China based on SRAP markers. Genet Mol Res 11(3):2441–2450

    Article  PubMed  Google Scholar 

  • Huo S, Chen H, Zhu QH, Xie XM (2012) Cloning of a 4CL gene fragment and construction of a RNAi expression vector of Pennisetum purpureum. Acta Pratac Sin 21(1):296–301

    Google Scholar 

  • Jia HL, Wang XM, Gao HW, Dong J, Wang YQ, Liu JN et al (2012) Cloning the gene of γ-tocopherol methyltransferase from alfalfa and expression analysis in adverse situations. Acta Pratac Sin 21(6):198–206

    Google Scholar 

  • Jiang J, Yang BL, Xia T, Yu SM, Wu YN (2011) Analysis of genetic diversity of salt tolerant alfalfa germplasms. Acta Pratac Sin 20(5):119–125

    Google Scholar 

  • Jiang LF, Zhang XQ, Ma X, Huang LK, Xie WG, Ma YM, Zhao YF (2013) Identification of orchardgrass (Dactylis glomerata L.) cultivars by using simple sequence repeat markers. Genet Mol Res 12(4):5111–5123

    Article  PubMed  Google Scholar 

  • Li D, Su Z, Dong J, Wang T (2009) An expression database for roots of the model legume Medicago truncatula under salt stress. BMC Genomics 10:517

    Article  PubMed Central  PubMed  Google Scholar 

  • Li D, Zhang Y, Hu X, Shen X, Ma L, Su Z, Wang T, Dong J (2011) Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol 11:109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li XX, Gao Q, Liang Y, Ma T, Cheng LQ, Qi DM, Liu H, Xu X, Chen SY, Liu GS (2013a) A novel salt-induced gene from sheepgrass, LcSAIN2, enhances salt tolerance in transgenic Arabidopsis. Plant Physiol Bioch 64:52–59

    Article  Google Scholar 

  • Li XX, Hou SL, Gao Q, Zhao PC, Chen SY, Qi DM, Lee BH, Cheng LQ, Liu GS (2013b) LcSAIN1, a novel salt-induced gene from sheepgrass, confers salt stress tolerance in transgenic Arabidopsis and rice. Plant Cell Physiol 54(7):1172–1185

    Article  CAS  PubMed  Google Scholar 

  • Liu RX, Yu LQ, Zhang Y, Wu D, Yun JF (2010) Clustering and evaluation of alfalfa germplasms with different fall dormancy levels by RAPD markers. Acta Agrestia sinica 18(1):108–114

    CAS  Google Scholar 

  • Liu J, Zhao Q, Yang ZM (2012) Identification of nine Cynodon dactylon varieties by SRAP molecular markers. Chin J grassland 4:21–25

    Google Scholar 

  • Liu Z, Ma L, Nan Z, Wang Y (2013a) Comparative transcriptional profiling provides insights into the evolution and development of the zygomorphic flower of Vicia sativa (Papilionoideae). PLoS One 8(2):e57338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Z, Chen T, Ma L, Zhao Z, Zhao PX, Nan Z, Wang Y (2013b) Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa. PLoS One 8(12):e83549

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma X, Gu XY, Chen TT, Chen SY, Huang LK, Zhang XQ (2013a) Genetic relationships between Lolium (Poaceae) species revealed by RAPD markers. Genet Mol Res 12(3):3246–3255

    CAS  PubMed  Google Scholar 

  • Ma Q, Li XY, Yuan HJ, Hu J, Wei L, Bao AK, Zhang JL, Wang SM (2013b) ZxSOS1 is essential for long-distance transport and spatial distribution of Na + and K + in the xerophyte Zygophyllum xanthoxylum. Plant Soil 374:661–676

    Article  Google Scholar 

  • Pang Y, Peel GJ, Sharma SB, Tang Y, Dixon RA (2008) A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. PNAS 105(37):14210–14215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pang Y, Wenger JP, Saathoff K, Peel GJ, Wen J, Huhman D, Allen SN, Tang Y, Cheng X, Tadege M, Ratet P, Mysore KS, Sumner LW, Marks MD, Dixon RA (2009) A WD40 repeat protein from Medicago truncatula is necessary for tissue-specific anthocyanin and proanthocyanidin biosynthesis but not for trichome development. Plant Physiol 151(3):1114–1129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pang Y, Cheng X, Huhman D, Ma J, Peel JG, Yonekura-Sakakibara K et al (2013) Medicago glucosyltransferase UGT72L1: potential roles in proanthocyanidin biosynthesis. Planta 238(1):139–154

    Article  CAS  PubMed  Google Scholar 

  • Peng XJ, Ma XY, Fan WH, Su M, Cheng LQ, Alam I, Lee BH, Qi DM, Shen SH, Liu GS (2011) Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Rep 30:1493–1502

    Article  CAS  Google Scholar 

  • Peng XJ, Zhang LX, Zhang LX, Liu ZJ, Cheng LQ, Yang Y, Shen SH, Chen SY, Liu GS (2013) The transcriptional factor LcDREB2 cooperates with LcSAMDC2 to contribute to salt tolerance in Leymus chinensis. Plant Cell Tiss Org 113:245–256

    Article  CAS  Google Scholar 

  • Rao JP, Agrawal P, Mohammad R, Rao SK, Reddy GR, Dechamma HJ, S Suryanarayana VV (2012) Expression of VP1 protein of serotype A and O of foot-and-mouth disease virus in transgenic sunnhemp plants and its immunogenicity for guinea pigs. Acta Virol 56(2):91–99

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Martens, Chen M, Li D, Dong J, Wang T (2010) Cloning and characterization of a functional flavanone-3-hydroxylase gene from Medicago truncatula. Mol Biol Rep 37(7):3283–3289

    Google Scholar 

  • Su M, Li XX, Li XF, Cheng LQ, Qi DM, Chen SY, Liu GS (2013) Molecular characterization and expression analysis of a sheepgrass sucrose transporter LcSUT1 after defoliation. Plant Mol Biol Rep 31(5):1184–1191

    Article  CAS  Google Scholar 

  • Sun Y, Long R, Kang J, Zhang T, Zhang Z, Zhou H, Yang Q (2013) Molecular cloning and characterization of three isoprenyl diphosphate synthase genes from alfalfa. Mol Biol Rep 40(2):2035–2044

    Article  CAS  PubMed  Google Scholar 

  • Tang R, Zhang XQ, Li YH, Xie XM (2014) Cloning and in silico analysis of a cinnamyl alcohol dehydrogenase gene in Pennisetum purpureum. J Genet 93(1):145–158

    Article  CAS  PubMed  Google Scholar 

  • Tong ZY, Xie C, Ma L, Liu LP, Jin YS, Dong JL, Wang T (2014) Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L.). PLoS One 9(2):e88310

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang DM, Zhu JB, Peng M, Zhou P (2008) Induction of a protective antibody response to FMDV in mice following oral immunization with transgenic Stylosanthes spp. as a feedstuff additive. Transgenic Res 17(6):1163–1170

    Article  CAS  PubMed  Google Scholar 

  • Wu GQ, Xi JJ, Wang Q, Bao AK, Ma Q, Zhang JL, Wang SM (2011) The ZxNHX gene encoding tonoplast Na+/H+ antiporter from the xerophyte Zygophyllum xanthoxylum plays important roles in response to salt and drought. J Plant Physiol 168:758–767

    Article  CAS  PubMed  Google Scholar 

  • Xie WG, Zhang XQ, Cai HW, Liu W, Peng Y (2010) Genetic diversity analysis and transferability of cereal EST-SSR markers to orchardgrass (Dactylis glomerata L.). Biochem Syst Ecol 38(4):740–749

    Article  CAS  Google Scholar 

  • Xie WG, Zhang XQ, Cai HW, Huang LK, Peng Y, Ma X (2011) Genetic maps of SSR and SRAP markers in diploid orchardgrass (Dactylis glomerata L.) using the pseudo-testcross strategy. Genome 54(3):212–221

    Article  CAS  PubMed  Google Scholar 

  • Xie C, Zhang R, Qu Y, Miao Z, Zhang Y, Shen X, Wang T, Dong J (2012) Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density. New Phytol 195(1):124–135

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, He JG, Sun XH, Wu JX (2011) Transformation of Lolium perenne with a fructan: fructan 1-fructosyltransferase gene from Agropyron cristatum and enhancement of drought tolerance in transgenic plants. Acta Pratac Sin 20(1):111–118

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Basic Research Program of China (“973”, 2014CB138704), the National High Technology Research and Development Program of China (“863”, 2011AA100209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongshe Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, S. et al. (2015). Advances in Forage and Turf Biotechnology in China. In: Budak, H., Spangenberg, G. (eds) Molecular Breeding of Forage and Turf. Springer, Cham. https://doi.org/10.1007/978-3-319-08714-6_10

Download citation

Publish with us

Policies and ethics