Skip to main content

Effect of Double Networking on Non-Linear Viscoelasticity of Elastomers

  • Chapter
  • First Online:
Non-Linear Viscoelasticity of Rubber Composites and Nanocomposites

Part of the book series: Advances in Polymer Science ((POLYMER,volume 264))

Abstract

The nonlinear viscoelastic behavior of cured rubber is quite different from that of uncured compound, since the presence of crosslink networks. The factors for the influence of the crosslink networks on the nonlinear viscoelastic behaviors of cured rubbers are very complex and obscure. One of the reasons is that the crosslink networks may be consisted of several different types of networks. However, there are few literatures reporting the nonlinear viscoelastic behaviors of cured rubbers with mutle-networks. We reviewed the literatures dedicated to the topic of the non-linear viscoelasticity of simplest mutle-networks—double-network and summarized the useful information as much as possible in the present paper. Song’s transient double-network model, double-network formed by twice curing and the specific crosslink network formed in metal salts of unsaturated carboxylic acids reinforced rubbers are introduced in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Medalia AI (1978) Effects of carbon black on dynamic properties of rubber. Rubber Chem Technol 51(3):437–523

    Article  CAS  Google Scholar 

  2. Wang MJ (1998) Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates. Rubber Chem Technol 71(3):520–589

    Article  CAS  Google Scholar 

  3. Meier JG, Kluppel M (2008) Carbon Black Networking in Elastomers Monitored by Dynamic Mechanical and Dielectric Spectroscopy. Macromol Mater Eng 293(1):12–38

    Article  CAS  Google Scholar 

  4. Vieweg S, Unger R, Heinrich G, Donth E (1999) Comparison of dynamic shear properties of styrene-butadiene vulcanizates filled with carbon black or polymeric fillers. J Appl Polym Sci 73(4):495–503

    Article  CAS  Google Scholar 

  5. Payne AR (1965) In Kraus G (ed) Reinforcement of elastomers. Interscience Publisher, New York (Chap 3)

    Google Scholar 

  6. Payne AR (1964) The role of hysteresis in polymers. Rubber J 146(1):36–49

    CAS  Google Scholar 

  7. Zhao F, Shi XY, Chen X, Zhao SG (2010) Interaction of Vulcanization and Reinforcement of CB on Dynamic Property of NR Characterized by RPA2000. J Appl Polym Sci 117(2):1168–1172

    Article  CAS  Google Scholar 

  8. Song MS, Wen Z, Hu GX (1999) Rheological behavior of polymer melts and concentrated solutions. part V: a new molecular theory of non-linear viscoelasticity for polymeric suspensions. J Mater Sci Technol 15(2):169–177

    Article  CAS  Google Scholar 

  9. Collier AA, Clegg DW (1988) Rheological measurement. Elsevier Appl Sci, New York, 483

    Google Scholar 

  10. Stephen TS, Winter HH, Gottlieb M (1988) The steady shear viscosity of filled polymeric liquids described by a linear superposition of two relaxation mechanisms. Rheol Acta 27(3):263–272

    Article  Google Scholar 

  11. Song MS, He ZR (1990) The molecular theory of viscoelasticity for thermoplastic elastomer SBS(SIS) at large deformations. Rheol Acta 29(1):31–45

    Article  CAS  Google Scholar 

  12. Song MS (1989) Studies on the relationship between the network structure and the mechanical properties of rubber vulcanizates (1) theory of elasticity for rubber vulcanizates with carbon black fillers in large deformation. Chin J Chem Eng 4(2):162–177

    Google Scholar 

  13. Roland CM, Warzel ML (1990) Orientation effects in rubber double networks. Rubber Chem Technol 63(2):285–297

    Article  CAS  Google Scholar 

  14. Santangelo PG, Roland CM (1994) The mechanical behavior of double network elastomers. Rubber Chem Technol 67(2):359–365

    Article  CAS  Google Scholar 

  15. Santangelo PG, Roland CM (1995) Failure properties of natural rubber double networks. Rubber Chem Technol 68(1):124–131

    Article  CAS  Google Scholar 

  16. Roland CM, Peng KL (1991) Electrical conductivity in rubber double networks. Rubber Chem Technol 64(5):790–800

    Article  CAS  Google Scholar 

  17. Hamed GR, Huang MY (1998) Tensile and tear behavior of anisotropic double networks of a black-filled natural rubber vulcanizate. Rubber Chem Technol 71(5):846–860

    Article  CAS  Google Scholar 

  18. Kaang S, Nah C (1998) Fatigue crack growth of double-networked natural rubber. Polymer 39(11):2209–2214

    Article  CAS  Google Scholar 

  19. Hvidt S, Kramer O, Batsberg W, Ferry JD (1980) Contribution of entanglements to the equilibrium modulus of 1,2-polybutadiene networks at small strains and estimate of the front factor. Macromolecules 13(4):933–939

    Article  CAS  Google Scholar 

  20. Batsberg W, Kramer O (1981) A direct experimental determination of the elastic contribution of chain entangling in a tightly cross-linked elastomer. J Chem Phys 74(11):6507–6508

    Article  CAS  Google Scholar 

  21. Granick S, Ferry JD (1983) Entangled chain structure trapped in a styrene-butadiene random copolymer by cross-linking in simple extension. Macromolecules 16(1):39–45

    Article  CAS  Google Scholar 

  22. Kramer O (1988) Selective quenching of large-scale molecular motions by cross-linking in the strained state. ACS Symp Ser 367:48–58

    Article  CAS  Google Scholar 

  23. Twardowski TE, Gaylord RJ (1989) The localization model of rubber elasticity and the stress-strain behavior of a network formed by cross-linking a deformed melt. Polym Bull 21(4):393–400

    Article  CAS  Google Scholar 

  24. Gaylord RJ, Twardowski TE, Douglas JF (1988) The localization model of rubber elasticity and the deformation of a network formed by cross-linking a strained melt. Polym Bull 20(3):305–310

    Article  CAS  Google Scholar 

  25. Tobolsky AV, Takahashi Y, Naganuma S (1972) Effect of additional cross-linking of continuous chemical stress relaxation of cis-polybutadiene. Polym J 3(1):60–66

    Article  CAS  Google Scholar 

  26. Gillen KT (1988) Effect of cross-links which occur during continuous chemical stress-relaxation. Macromolecules 21(2):442–446

    Article  CAS  Google Scholar 

  27. Flory PJ (1956) Theory of elastic mechanisms in fibrous proteins. J Am Chem Soc 78(20):5222–5235

    Article  CAS  Google Scholar 

  28. Mandelkern L, Roberts DE, Diorio AF, Posner AS (1959) Dimensional changes in system of fibrous macromolecules: polyethylene. J Am Chem Soc 81(16):4148–4157

    Article  CAS  Google Scholar 

  29. Hikmet RAM, Lub J, Vanderbrink PM (1992) Structure and mobility within anisotropic networks obtained by photopolymerization of liquid crystal molecules. Macromolecules 25(16):4194–4199

    Article  CAS  Google Scholar 

  30. Reichert WF, Goritz D, Duschl EJ (1993) The double network, a model describing filled elastomers. Polymer 34(6):1216–1221

    Article  CAS  Google Scholar 

  31. Mott PH, Roland CM (2000) Mechanical and optical behavior of double network rubbers. Macromolecules 33(11):4132–4137

    Article  CAS  Google Scholar 

  32. Kaang S, Gong D, Nah C (1997) Some physical characteristics of double-networked natural rubber. J Appl Polym Sci 65(5):917–924

    Article  CAS  Google Scholar 

  33. Aprem AS, Joseph K, Thomas S (2004) Studies on double networks in natural rubber vulcanizates. J Appl Polym Sci 91(2):1068–1076

    Article  CAS  Google Scholar 

  34. Wang J, Hamed GR, Umetsu K, Roland CM (2005) The Payne effect in double betwork elastomers. Rubber Chem Technol 78(1):76–83

    Article  CAS  Google Scholar 

  35. Flory PJ (1960) Elasticity of polymer networks cross-linked in state of strain. Trans Faraday Soc 56:722–743

    Article  CAS  Google Scholar 

  36. Baxandall LG, Edwards SF (1988) Deformation-dependent properties of polymer networks constructed by addition of crosslinks under strain. Macromolecules 21(6):1763–1772

    Article  CAS  Google Scholar 

  37. Termonia Y (1990) Molecular model for the mechanical properties of elastomers. 3. networks cross-linked in a state of strain. Macromolecules 23(7):1976–1979

    Article  CAS  Google Scholar 

  38. Dontsov A, Decandia F, Amelino L (1972) Elastic properties and structure of polybutadiene vulcanized with magnesium methaceylate. J Appl Polym Sci 16(2):505–518

    Article  CAS  Google Scholar 

  39. Saito Y, Nishimura K, Asada M, Toyoda A (1994) Polymerization behavior of zinc methacrylate study of zinc methacrylate/rubber/peroxide compounds; Part 2. J Jpn Rubber Soc 67(12):867–872

    Article  CAS  Google Scholar 

  40. Gao GX, Zhang ZC, Zheng YS, Jin ZH (2009) Effect of magnesium methacrylateand zinc methacrylate on bond properties of thermal insulation material based on NBR/EPDM blends. J Appl Polym Sci 113(6):3901–3909

    Article  CAS  Google Scholar 

  41. Yin DH, Zhang Y, Zhang YX, Peng ZL, Fan Y, Sun K (2002) Reinforcement of peroxide-cured styrene-butadiene rubber vulcanizates by mathacrylic acid and magnesium oxide. J Appl Polym Sci 85(13):2667–2676

    Article  CAS  Google Scholar 

  42. Yin DH, Zhang Y, Peng ZL, Zhang YX (2003) A comparison between the SBR vulcanizates reinforced by magnesium methacrylate added directly or prepared in situ. Eur Polym J 39(1):99–105

    Article  CAS  Google Scholar 

  43. Lu YL, Liu L, Yang C, Tian M, Zhang LQ (2005) The morphology of zinc dimethacrylate reinforced elastomers investigated by SEM and TEM. Eur Polym J 41(3):577–588

    Article  CAS  Google Scholar 

  44. Peng ZL, Liang X, Zhang YX, Zhang Y (2002) Reinforcement of EPDM by in situ prepared zinc dimethacrylate. J Appl Polym Sci 84(7):1339–1345

    Article  CAS  Google Scholar 

  45. Yuan XH, Peng ZL, Zhang Y, Zhang YX (1999) The properties and structure of peroxide-cured NBR containing magnesium methacrylate. Polym Polym Comp 7(6):431–436

    CAS  Google Scholar 

  46. Du AH, Peng ZL, Zhang Y, Zhang YX (2003) Properties of EVM vulcanizates reinforced by in situ prepared sodium methacrylate. J Appl Polym Sci 89(8):2192–2200

    Article  CAS  Google Scholar 

  47. Nie YJ, Huang GS, Qu LL, Zhang P, Weng GS, Wu JR (2010) Cure kinetics and morphology of natural rubber reinforced by the in situ polymerization of zinc dimethacrylate. J Appl Polym Sci 115(1):99–106

    Article  CAS  Google Scholar 

  48. Du AH, Peng ZL, Zhang Y, Zhang YX (2002) Effect of magnesium methacrylate on the mechanical properties of EVM vulcanizate. Polym Test 21(8):889–895

    Article  CAS  Google Scholar 

  49. Lu YL, Liu L, Shen DY, Yang C, Zhang LQ (2004) Infrared study on in situ polymerization of zinc dimethacrylate in poly(α-octylene-co-ethylene) elastomer. Polym Int 53(6):802–808

    Article  CAS  Google Scholar 

  50. Klingender RC, Oyama M, Saito Y (1990) High-strength compound of highly saturated nitrile and its applications. Rubber World 202(3):26–31

    CAS  Google Scholar 

  51. Lu YL, Liu L, Tian M, Geng HP, Zhang LQ (2005) Study on mechanical properties of elastomers reinforced by zinc dimethacrylate. Eur Polym J 41(3):589–598

    Article  CAS  Google Scholar 

  52. Du AH, Peng ZL, Zhang Y, Zhang YX (2004) Fracture morphology and mechanical properties of ethylene/vinyl acetate rubber vulcanizates reinforced by in situ prepared sodium methacrylate. J Polym Sci B 42(9):1715–1724

    Article  CAS  Google Scholar 

  53. Chen YK, Xu CH (2012) Stress-strain behaviors and crosslink networks studies of natural rubber-zinc dimethacrylate composites. J Macro Sci B Phys 51(7):1384–1400

    Article  CAS  Google Scholar 

  54. Xu CH, Chen YK, Cao LM, Wang YP, Zeng XR (2013) Study of the crosslinking evolution of the styrene-butadiene rubber/zinc dimethacrylate based on dissolution/swelling experiments. J Macro Sci B Phys 52(2):319–333

    Article  CAS  Google Scholar 

  55. Xu CH, Chen YK, Huang J, Zeng XR, Ding JP (2012) Thermal aging on mechanical properties and crosslink network of natural nubber/zinc dimethacrylate composites. J Appl Polym Sci 124(3):2240–2249

    Article  CAS  Google Scholar 

  56. Xu CH, Chen YK, Zeng XR (2012) A Study on the crosslink network evolution of magnesium dimethacrylate/natural rubber composite. J Appl Polym Sci 125(3):2449–2459

    Article  CAS  Google Scholar 

  57. Chen YK, Xu CH, Wang YP (2012) Viscoelasticity behaviors of lightly cured natural rubber/zinc dimethacrylate composites. Polym Compos 33(6):967–975

    Article  CAS  Google Scholar 

  58. Chen YK, Xu CH (2012) Specific nonlinear viscoelasticity behaviors of natural rubber and zinc dimethacrylate composites due to multi-crosslinking bond interaction by using rubber process analyzer 2000. Polym Compos 32(10):1593–1600

    Article  Google Scholar 

  59. Xu CH, Chen YK, Cao LM, Zeng XR (2012) Dynamic viscoelasticity behaviors of magnesium dimethacrylate/natural rubber composites with different cure extent. Polym Compos 33(7):1244–1253

    Article  CAS  Google Scholar 

  60. Chen YK, Xu CH (2011) Crosslink network evolution of nature rubber/zinc dimethacrylate composite during peroxide vulcanization. Polym Compos 32(10):1505–151

    Article  Google Scholar 

  61. Chen YK, Xu CH (2012) Stress softening of NR reinforced by in situ prepared zinc dimethacrylate. J Appl Polym Sci 123(2):833–841

    Article  CAS  Google Scholar 

  62. Roozbeh D, Mikhail I (2009) A network evolution model for the anisotropic Mullins effect in carbon black filled rubbers. Int J Solids Struct 46(16):2967–2977

    Article  Google Scholar 

  63. Jong L (2005) Dynamic mechanical properties of soy protein filled elastomers. J Polym Environ 13(4):329–338

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukun Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, Y., Xu, C. (2014). Effect of Double Networking on Non-Linear Viscoelasticity of Elastomers. In: Ponnamma, D., Thomas, S. (eds) Non-Linear Viscoelasticity of Rubber Composites and Nanocomposites. Advances in Polymer Science, vol 264. Springer, Cham. https://doi.org/10.1007/978-3-319-08702-3_7

Download citation

Publish with us

Policies and ethics