Microfluidic Electrochemical Biosensors: Fabrication and Applications

  • Sandrine Miserere
  • Arben MerkoçiEmail author


A biosensor is generally defined as an analytical device which converts a biological response into a quantifiable and processable signal (Christopher R. Lowe 1984). It consists of bio-recognition systems (enzymes, DNA, proteins, cells, etc.), immobilized onto the surface of a transducer (electrochemical, optical, mass and thermal for the most common). Specific interactions between the target (analyte) and the complementary bio-recognition layer produce a physico-chemical change, which is detected and may be measured by the transducer. This specific interaction leads to very selective and specific sensors.


Capture Probe Inkjet Printing Screen Printing Electrochemical Biosensor Microfluidic Platform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by MICINN project MAT2011-25870 and E.U. through FP7 “NADINE” project (contract number 246513).


  1. Abdolahad M, Taghinejad M, Taghinejad H, Janmaleki M, Mohajerzadeh S (2012) A vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells. Lab Chip 12(6):1183–1190CrossRefGoogle Scholar
  2. Arndt S, Seebach J, Psathaki K, Galla HJ, Wegener J (2004) Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosens Bioelectron 19(6):583–594CrossRefGoogle Scholar
  3. Arya SK, Lee KC, Bin Dah’alan D, Daniel RARA (2012) Breast tumor cell detection at single cell resolution using an electrochemical impedance technique. Lab Chip 12(13):2362–2368CrossRefGoogle Scholar
  4. Azevedo AM, Martins VC, Prazeres DM, Vojinović V, Cabral JM, Fonseca LP (2003) Horseradish peroxidase: a valuable tool in biotechnology. Biotechnol Annu Rev 9:199–247CrossRefGoogle Scholar
  5. Bowden N, Brittain S, Evans AG, Hutchinson JW, Whitesides GM (1998) Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393(6681):146–149CrossRefGoogle Scholar
  6. Brena B, Gonzalez-Pombo P, Batista-Viera F (2013) Immobilization of enzymes: a literature survey. Methods Mol Biol 1051:15–31. doi: 10.1007/978-1-62703-550-7_2 CrossRefGoogle Scholar
  7. Chaubey A, Malhotra BD (2002) Mediated biosensors. Biosens Bioelectron 17(6–7):441–456CrossRefGoogle Scholar
  8. Chen IJ, White IM (2011) High-sensitivity electrochemical enzyme-linked assay on a microfluidic interdigitated microelectrode. Biosens Bioelectron 26(11):4375–4381CrossRefGoogle Scholar
  9. Crosby JN, Hanley RS (1977) Chemical vapor deposition, US Patent 4250210AGoogle Scholar
  10. Fang AP, Ng HT, Li SFY (2003) A high-performance glucose biosensor based on monomolecular layer of glucose oxidase covalently immobilised on indium-tin oxide surface. Biosens Bioelectron 19(1):43–49CrossRefGoogle Scholar
  11. Ferguson BS, Buchsbaum SF, Wu TT, Hsieh K, Xiao Y, Sun R, Soh HT (2011) Genetic analysis of H1N1 influenza virus from throat swab samples in a microfluidic system for point-of-care diagnostics. J Am Chem Soc 133(23):9129–9135CrossRefGoogle Scholar
  12. Ferrigno R, Lee JN, Jiang XY, Whitesides GM (2004) Potentiometric titrations in a poly(dimethylsiloxane)-based microfluidic device. Anal Chem 76(8):2273–2280CrossRefGoogle Scholar
  13. Fischer DJ, Hulvey MK, Regel AR, Lunte SM (2009) Amperometric detection in microchip electrophoresis devices: Effect of electrode material and alignment on analytical performance. Electrophoresis 30(19):3324–3333CrossRefGoogle Scholar
  14. Grieshaber D, MacKenzie R, Voros J, Reimhult E (2008) Electrochemical biosensors—sensor principles and architectures. Sensors 8(3):1400–1458CrossRefGoogle Scholar
  15. Guan JG, Miao YQ, Zhang QJ (2004) Impedimetric biosensors. J Biosci Bioeng 97(4):219–226CrossRefGoogle Scholar
  16. Heller A (1996) Amperometric biosensors. Curr Opin Biotechnol 7(1):50–54CrossRefGoogle Scholar
  17. Hondroulis E, Liu C, Li CZ (2010) Whole cell based electrical impedance sensing approach for a rapid nanotoxicity assay. Nanotechnology 21(31)Google Scholar
  18. Jang YH, Oh SY, Park JK (2006) In situ electrochemical enzyme immunoassay on a microchip with surface-functionalized poly(dimethylsiloxane) channel. Enzyme Microb Technol 39(5):1122–1127CrossRefGoogle Scholar
  19. Jensen GC, Krause CE, Sotzing GA, Rusling JF (2011) Inkjet-printed gold nanoparticle electrochemical arrays on plastic. Application to immunodetection of a cancer biomarker protein. Phys Chem Chem Phys 13(11):4888–4894CrossRefGoogle Scholar
  20. Kell DB, Davey CL (1990) Conductimetric and impedimetric devices. In: Cass AEG (ed) Biosensors: a practical approach. IRL, Oxford, pp 125–154Google Scholar
  21. Kiilerich-Pedersen K, Rozlosnik N (2012) Cell-based biosensors: electrical sensing in microfluidic devices. Diagnostics 2(4):83–96CrossRefGoogle Scholar
  22. Kiilerich-Pedersen K, Poulsen CR, Jain T, Rozlosnik N (2011) Polymer based biosensor for rapid electrochemical detection of virus infection of human cells. Biosens Bioelectron 28(1):386–392CrossRefGoogle Scholar
  23. Kim JH, Kang CJ, Kim YS (2005) Development of a microfabricated disposable microchip with a capillary electrophoresis and integrated three-electrode electrochemical detection. Biosens Bioelectron 20(11):2314–2317CrossRefGoogle Scholar
  24. Komuro N, Takaki S, Suzuki K, Citterio D (2013) Inkjet printed (bio)chemical sensing devices. Anal Bioanal Chem 405(17):5785–5805CrossRefGoogle Scholar
  25. Larsen ST, Taboryski R (2012) All polymer chip for amperometric studies of transmitter release from large groups of neuronal cells. Analyst 137(21):5057–5061CrossRefGoogle Scholar
  26. Lauks IR (1989) Reference electrode, WO Patent 1989007758A1Google Scholar
  27. Li DP, Sutton D, Burgess A, Graham D, Calvert PD (2009) Conductive copper and nickel lines via reactive inkjet printing. J Mater Chem 19(22):3719–3724CrossRefGoogle Scholar
  28. Li JT, Ye F, Vaziri S, Muhammed M, Lemme MC, Ostling M (2013) Efficient inkjet printing of graphene. Adv Mater 25(29):3985–3992CrossRefGoogle Scholar
  29. Lin FYH, Sabri M, Alirezaie J, Li DQ, Sherman PM (2005) Development of a nanoparticle-labeled microfluidic immunoassay for detection of pathogenic microorganisms. Clin Diagn Lab Immunol 12(3):418–425Google Scholar
  30. Lin P, Luo XT, Hsing IM, Yan F (2011) Organic electrochemical transistors integrated in flexible microfluidic systems and used for label-free DNA sensing. Adv Mater 23(35):4035–4040CrossRefGoogle Scholar
  31. Liu DJ, Perdue RK, Sun L, Crooks RM (2004) Immobilization of DNA onto poly(dimethylsiloxane) surfaces and application to a microelectrochemical enzyme-amplified DNA hybridization assay. Langmuir 20(14):5905–5910CrossRefGoogle Scholar
  32. Liu QJ, Cai H, Xu Y, Xiao LD, Yang M, Wang P (2007) Detection of heavy metal toxicity using cardiac cell-based biosensor. Biosens Bioelectron 22(12):3224–3229CrossRefGoogle Scholar
  33. Lowe CR (1984) Biosensors. Trends Biotechnol 2(3):59–65CrossRefMathSciNetGoogle Scholar
  34. Maattanen A, Vanamo U, Ihalainen P, Pulkkinen P, Tenhu H, Bobacka J, Peltonen J (2013) A low-cost paper-based inkjet-printed platform for electrochemical analyses. Sens Actuators B Chem 177:153–162CrossRefGoogle Scholar
  35. Malaquin L, Limoges B, Goulpeau J, Marchal D, Kivlehan F, Le Nel A, Mavre F, Viovy JL, Taniga V, Miserere S, Mottet G (2010) Real time electrochemical DNA quantification in a COC lab on a chip: towards low-cost diagnosis of nosocomial infections. In: 14th International conference on miniaturized systems for chemistry and life sciences 2010, MicroTAS 2010 3:2053-2055Google Scholar
  36. Marin S, Merkoci A (2009) Direct electrochemical stripping detection of cystic-fibrosis-related DNA linked through cadmium sulfide quantum dots. Nanotechnology 20(5)Google Scholar
  37. Marrakchi M, Dzyadevych SV, Namour P, Martelet C, Jaffrezic-Renaulta N (2005) A novel proteinase K biosensor based on interdigitated conductometric electrodes for proteins determination in rivers and sewers water. Sens Actuators B Chem 111:390–395CrossRefGoogle Scholar
  38. Mayorga-Martinez CC, Hlavata L, Miserere S, Lopez-Marzo A, Labuda J, Pons J, Merkoci A (2014) An integrated phenol ‘sensoremoval’ microfluidic nanostructured platform. Biosens Bioelectron 55:355–359CrossRefGoogle Scholar
  39. McCoy MH, Wang E (2005) Use of electric cell-substrate impedance sensing as a tool for quantifying cytopathic effect in influenza A virus infected MDCK cells in real-time. J Virol Methods 130(1–2):157–161CrossRefGoogle Scholar
  40. Medina-Sanchez M, Miserere S, Morales-Narvaez E, Merkoci A (2014) On-chip magneto-immunoassay for Alzheimer’s biomarker electrochemical detection by using quantum dots as labels. Biosens Bioelectron 54:279–284CrossRefGoogle Scholar
  41. Mehrvar M, Abdi M (2004) Recent developments, characteristics, and potential applications of electrochemical biosensors. Anal Sci 20(8):1113–1126CrossRefGoogle Scholar
  42. Moussy F, Harrison DJ (1994) Prevention of the rapid degradation of subcutaneously implanted Ag/AgCl reference electrodes using polymer-coatings. Anal Chem 66(5):674–679CrossRefGoogle Scholar
  43. Peckova K, Musilova J, Barek J (2009) Boron-doped diamond film electrodes-new tool for voltammetric determination of organic substances. Crit Rev Anal Chem 39(3):148–172CrossRefGoogle Scholar
  44. Perelaer J, de Laat AWM, Hendriks CE, Schubert US (2008) Inkjet-printed silver tracks: low temperature curing and thermal stability investigation. J Mater Chem 18(27):3209–3215CrossRefGoogle Scholar
  45. Puri N, Sharma V, Tanwar VK, Singh N, Biradar AM, Rajesh (2013) Enzyme-modified indium tin oxide microelectrode array-based electrochemical uric acid biosensor. Prog Biomater 2(1):1–7CrossRefGoogle Scholar
  46. Reichelt K, Jiang X (1990) THE preparation of thin-films by physical vapor-deposition methods. Thin Solid Films 191(1):91–126CrossRefGoogle Scholar
  47. Rius-Ruiz FX, Bejarano-Nosas D, Blondeau P, Riu J, Rius FX (2011) Disposable planar reference electrode based on carbon nanotubes and polyacrylate membrane. Anal Chem 83(14):5783–5788CrossRefGoogle Scholar
  48. Sheppard NF, Tucker RC, Wu C (1993) Electrical-conductivity measurements using microfabricated interdigitated electrodes. Anal Chem 65(9):1199–1202CrossRefGoogle Scholar
  49. Soldatkin OO, Kucherenko IS, Pyeshkova VM, Kukla AL, Jaffrezic-Renault N, El’skaya AV, Dzyadevych SV, Soldatkin AP (2012) Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions. Bioelectrochemistry 83:25–30CrossRefGoogle Scholar
  50. Solly K, Wang XB, Xu X, Strulovici B, Zheng W (2004) Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. Assay Drug Dev Technol 2(4):363–372CrossRefGoogle Scholar
  51. Swensen JS, Xiao Y, Ferguson BS, Lubin AA, Lai RY, Heeger AJ, Plaxco KW, Soh HT (2009) Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor. J Am Chem Soc 131(12):4262–4266CrossRefGoogle Scholar
  52. Tortorich R, Choi J-W (2013) Inkjet printing of carbon nanotubes. Nanomaterials 3(3):453–468CrossRefGoogle Scholar
  53. Xiong ZT, Liu CQ (2012) Optimization of inkjet printed PEDOT:PSS thin films through annealing processes. Org Electron 13(9):1532–1540CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Nanobioelectronics & Biosensors Group, Catalan Institute of Nanosciences and Nanotechnology (ICN2)Autonomous University of BarcelonaBellaterraSpain
  2. 2.Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain

Personalised recommendations