Skip to main content

Fluidic Platforms and Components of Lab-on-a-Chip devices

  • Chapter
  • First Online:
Lab-on-a-Chip Devices and Micro-Total Analysis Systems

Abstract

In recent years the distribution of Lab-on-a-chip devices as well as micro-total analysis systems in applications such as analytical chemistry, biochemistry, biotechnology, microsystems technology, or clinical diagnostics has increased significantly. In order to allow multiple assays to be carried out on this devices components that enable fast tests and quantitative measurements are needed. The first systems which fulfilled these requirements were paper based devices. The development of these systems was based on chromatographic techniques. The basic principle is already known as so termed spot tests since the 1930s. The trend to take more and more applications out of the laboratory to the user started the development of a large number of platforms for point of care devices. These platforms can be driven by different ways, e.g., pressure, capillary flow, or electro kinetic effects. Complex applications need additional fluidic components such as pumps, valves, sensors, or mixers. In this chapter different fluidic platforms as well as fluidic components will be described. Applications of platforms and integrated components are exemplarily demonstrated by means of case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe K, Kotera K, Suzuki K, Citterio D (2010) Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem 398(2):885–893

    Google Scholar 

  • Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80(18):6928–6934

    Google Scholar 

  • Adams ML, Johnston ML, Scherer A, Quake SR (2005) Polydimethylsiloxane based microfluidic diode. J Micromech Microeng 15(8):1517

    Google Scholar 

  • Ahmed D, Mao X, Juluri BK, Huang TJ (2009) A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluid Nanofluid 7(5):727–731

    Google Scholar 

  • Ahn CH, Allen MG (1995) Fluid micropumps based on rotary magnetic actuators. In: IEEE micro electro mechanical systems workshop (MEMS’95), Amsterdam, Netherlands. IEEE, Washington, DC, pp 408–412

    Google Scholar 

  • Ahn CH, Jin-Woo C, Beaucage G, Nevin JH, Jeong-Bong L, Puntambekar A, Lee JY (2004) Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc IEEE 92(1):154–173

    Google Scholar 

  • Ahn S-H, Kim Y-K (1997) Fabrication and experiment of planar micro ion drag pump. In: International conference on solid state sensors and actuators, 1997 TRANSDUCERS’97 Chicago, 1997. IEEE, Washington, DC, pp 373–376

    Google Scholar 

  • Anderson RC, Bogdan GJ, Bamiv Z, Dawes TD, Winkler J, Roy K (1997) Microfluidic bischemical analysis system. In: Transducers 1997 - international conference on solid state sensors and actuators, 16–19 Jun 1997. IEEE, Washington, DC, pp 477–480. doi:10.1109/SENSOR.1997.613690

    Google Scholar 

  • Andersson H, van der Wijngaart W, Enoksson P, Stemme G (2000) Micromachined flow-through filter-chamber for chemical reactions on beads. Sensors Actuators B Chem 67(1–2):203–208

    Google Scholar 

  • Andersson H, van der Wijngaart W, Griss P, Niklaus F, Stemme G (2001a) Hydrophobic valves of plasma deposited octafluorocyclobutane in DRIE channels. Sens Actuators B 75(1–2):136–141

    Google Scholar 

  • Andersson H, van der Wijngaart W, Nilsson P, Enoksson P, Stemme G (2001b) A valve-less diffuser micropump for microfluidic analytical systems. Sens Actuators B 72(3):259–265

    Google Scholar 

  • Andersson H, van der Wijngaart W, Stemme G (2001c) Micromachined filter-chamber array with passive valves for biochemical assays on beads. Electrophoresis 22(2):249–257

    Google Scholar 

  • Atten P, Seyed-Yagoobi J (2003) Electrohydrodynamically induced dielectric liquid flow through pure conduction in point/plane geometry. IEEE Trans Dielectr Electr Insul 10(1):27–36

    Google Scholar 

  • Bae B, Kee H, Kim S, Lee Y, Sim T, Kim Y, Park K (2003) In vitro experiment of the pressure regulating valve for a glaucoma implant. J Micromech Microeng 13(5):613

    Google Scholar 

  • Baldi A, Gu YD, Loftness PE, Siegel RA, Ziaie B (2003) A hydrogel-actuated environmentally sensitive microvalve for active flow control. J Microelectromech Syst 12(5):613–621

    Google Scholar 

  • Barbaro M, Bonfiglio A, Raffo L, Alessandrini A, Facci P, BarakBarak I (2006) A CMOS, fully integrated sensor for electronic detection of DNA hybridization. IEEE Electron Device Letters 27(7):595–597

    Google Scholar 

  • Bart SF, Tavrow LS, Mehregany M, Lang JH (1990) Microfabricated electrohydrodynamic pumps. Sensors Actuators A Phys 21(1):193–197

    Google Scholar 

  • Barth PW (1995) Silicon microvalves for gas flow control. In: The 8th international conference on solid-state sensors and actuators, Eurosensors IX, Transducers’95, 25–29 Jun 1995. IEEE, Washington, DC, pp 276–279. doi:10.1109/SENSOR.1995.721799

    Google Scholar 

  • Bau HH, Zhong J, Yi M (2001) A minute magneto hydro dynamic (MHD) mixer. Sens Actuators B 79(2):207–215

    Google Scholar 

  • Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B-H (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(6778):588–590

    Google Scholar 

  • Belgrader P, Okuzumi M, Pourahmadi F, Borkholder DA, Northrup MA (2000) A microfluidic cartridge to prepare spores for PCR analysis. Biosens Bioelectron 14(10):849–852

    Google Scholar 

  • Benard WL, Kahn H, Heuer AH, Huff MA (1998) Thin-film shape-memory alloy actuated micropumps. J Microelectromech Syst 7(2):245–251

    Google Scholar 

  • Berger M, Welle A, Gottwald E, Rapp M, Länge K (2010) Biosensors coated with sulfated polysaccharides for the detection of hepatocyte growth factor/scatter factor in cell culture medium. Biosens Bioelectron 26(4):1706–1709

    Google Scholar 

  • Berglund RN, Liu BYH (1973) Generation of monodisperse aerosol standards. Environ Sci Technol 7(2):147–153

    Google Scholar 

  • Berthier E, Beebe DJ (2007) Flow rate analysis of a surface tension driven passive micropump. Lab Chip 7(11):1475–1478

    Google Scholar 

  • Bessoth F, deMello AJ, Manz A (1999) Microstructure for efficient continuous flow mixing. Anal Commun 36(6):213–215

    Google Scholar 

  • Biddiss E, Erickson D, Li D (2004) Heterogeneous surface charge enhanced micromixing for electrokinetic flows. Anal Chem 76(11):3208–3213

    Google Scholar 

  • Bien DCS, Mitchell SJN, Gamble HS (2003) Fabrication and characterization of a micromachined passive valve. J Micromech Microeng 13(5):557

    Google Scholar 

  • Bocong Y, Boxiong W, Werner Karl S (2010) A thermopneumatically actuated bistable microvalve. J Micromech Microeng 20(9):095024

    Google Scholar 

  • Böhm S, Olthuis W, Bergveld P (1999a) An integrated micromachined electrochemical pump and dosing system. Biomed Microdevices 1(2):121–130

    Google Scholar 

  • Böhm S, Olthuis W, Bergveld P (1999b) A plastic micropump constructed with conventional techniques and materials. Sensors Actuators A Phys 77(3):223–228

    Google Scholar 

  • Bökenkamp D, Desai A, Yang X, Tai Y-C, Marzluff EM, Mayo SL (1998) Microfabricated silicon mixers for submillisecond quench-flow analysis. Anal Chem 70(2):232–236

    Google Scholar 

  • Branebjerg J, Gravesen P, Krog JP, Nielsen CR (1996) Fast mixing by lamination. In: The ninth annual international workshop on micro electro mechanical systems, 1996, MEMS’96, Proceedings. An investigation of micro structures, sensors, actuators, machines and systems. IEEE, Washington, DC, pp 441–446

    Google Scholar 

  • Branebjerg J, Jensen OS, Laursen NG, Leistiko O, Soeberg H (1991) A micromachined flow sensor for measuring small liquid flows. In: Transducers 1991 - international conference on solid-state sensors and actuators, 24–27 June 1991. IEEE, Washington, DC, pp 41–44. doi:10.1109/SENSOR.1991.148793

    Google Scholar 

  • Brody JP, Yager P (1997) Diffusion-based extraction in a microfabricated device. Sensors Actuators A Phys 58(1):13–18

    Google Scholar 

  • Burns MA, Mastrangelo CH, Sammarco TS, Man FP, Webster JR, Johnsons B, Foerster B, Jones D, Fields Y, Kaiser AR (1996) Microfabricated structures for integrated DNA analysis. Proc Natl Acad Sci 93(11):5556–5561

    Google Scholar 

  • Burtis CA, Mailen JC, Johnson WF, Scott CD, Tiffany TO, Anderson NG (1972) Development of a miniature fast analyzer. Clin Chem 18(8):753–761

    Google Scholar 

  • Carlen ET, Mastrangelo CH (2002) Surface micromachined paraffin-actuated microvalve. J Microelectromech Syst 11(5):408–420

    Google Scholar 

  • Carrozza MC, Croce N, Magnani B, Dario P (1995) A piezoelectric-driven stereolithography-fabricated micropump. J Micromech Microeng 5(2):177

    Google Scholar 

  • Clausell-Tormos J, Lieber D, Baret J-C, El-Harrak A, Miller OJ, Frenz L, Blouwolff J, Humphry KJ, Köster S, Duan H (2008) Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol 15(5):427–437

    Google Scholar 

  • Colgate E, Matsumoto H (1990) An investigation of electrowetting‐based microactuation. J Vac Sci Technol A 8(4):3625–3633

    Google Scholar 

  • Crevillén AG, Hervás M, López MA, González MC, Escarpa A (2007) Real sample analysis on microfluidic devices. Talanta 74(3):342–357

    Google Scholar 

  • Curcio M, Roeraade J (2002) Continuous segmented-flow polymerase chain reaction for high-throughput miniaturized DNA amplification. Anal Chem 75(1):1–7

    Google Scholar 

  • Chakraborty I, Tang WC, Bame DP, Tang TK (2000) MEMS micro-valve for space applications. Sensors Actuators A Phys 83(1–3):188–193

    Google Scholar 

  • Chen C-H, Santiago JG (2002) A planar electroosmotic micropump. J Microelectromech Syst 11(6):672–683

    Google Scholar 

  • Chen IJ, Eckstein EC, Lindner E (2009) Computation of transient flow rates in passive pumping micro-fluidic systems. Lab Chip 9(1):107–114

    Google Scholar 

  • Chen JZ, Darhuber AA, Troian SM, Wagner S (2004) Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation. Lab Chip 4(5):473–480

    Google Scholar 

  • Chen ZY, Wang J, Qian SZ, Bau HH (2005) Thermally-actuated, phase change flow control for microfluidic systems. Lab Chip 5(11):1277–1285

    Google Scholar 

  • Cheng C-M, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, Mirica KA, Whitesides GM (2010) Paper-based ELISA. Angew Chem Int Ed 49(28):4771–4774

    Google Scholar 

  • Cheung K, Gawad S, Renaud P (2005) Impedance spectroscopy flow cytometry: on‐chip label‐free cell differentiation. Cytometry A 65(2):124–132

    Google Scholar 

  • Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12(12):2118–2134

    Google Scholar 

  • Cho HJ, Oh KW, Ahn CH, Boolchand P, Tae-Chul N (2001) Stress analysis of silicon membranes with electroplated permalloy films using Raman scattering. IEEE Trans Magn 37(4):2749–2751

    Google Scholar 

  • Cho ST, Wise KD (1993) A high-performance microflowmeter with built-in self test. Sensors Actuators A Phys 36(1):47–56

    Google Scholar 

  • Choi J-W, Oh K, Han A, Wijayawardhana CA, Lannes C, Bhansali S, Schlueter K, Heineman W, Halsall HB, Nevin J, Helmicki A, Henderson HT, Ahn C (2001) Development and characterization of microfluidic devices and systems for magnetic bead-based biochemical detection. Biomed Microdevices 3(3):191–200

    Google Scholar 

  • Choi K, Ng AH, Fobel R, Wheeler AR (2012) Digital microfluidics. Annu Rev Anal Chem 5:413–440

    Google Scholar 

  • Chou H-P, Unger M, Quake S (2001) A microfabricated rotary pump. Biomed Microdevices 3(4):323–330

    Google Scholar 

  • Chow AW (2002) Lab-on-a-chip: opportunities for chemical engineering. AIChE J 48(8):1590–1595

    Google Scholar 

  • Chung S, Kim J, Wang K, Han D-C, Chang J-K (2003) Development of MEMS-based cerebrospinal fluid shunt system. Biomed Microdevices 5(4):311–321

    Google Scholar 

  • Darabi J, Rada M, Ohadi M, Lawler J (2002) Design, fabrication, and testing of an electrohydrodynamic ion-drag micropump. J Microelectromech Syst 11(6):684–690

    Google Scholar 

  • Dario P, Croce N, Carrozza MC, Varallo G (1996) A fluid handling system for a chemical microanalyzer. J Micromech Microeng 6(1):95

    Google Scholar 

  • Dasgupta PK, Liu S (1994) Auxiliary electroosmotic pumping in capillary electrophoresis. Anal Chem 66(19):3060–3065

    Google Scholar 

  • Davidsson R, Genin F, Bengtsson M, Laurell T, Emnéus J (2004) Microfluidic biosensing systems Part I. Development and optimisation of enzymatic chemiluminescent μ-biosensors based on silicon microchips. Lab Chip 4(5):481–487

    Google Scholar 

  • de Jong J, Lammertink RGH, Wessling M (2006) Membranes and microfluidics: a review. Lab Chip 6(9):1125–1139

    Google Scholar 

  • Deféver T, Druet M, Rochelet-Dequaire M, Joannes M, Grossiord C, Limoges B, Marchal D (2009) Real-time electrochemical monitoring of the polymerase chain reaction by mediated redox catalysis. J Am Chem Soc 131(32):11433–11441

    Google Scholar 

  • Delapierre G (1989) Micro-machining: a survey of the most commonly used processes. Sensors Actuators 17(1–2):123–138

    Google Scholar 

  • Dertinger SK, Chiu DT, Jeon NL, Whitesides GM (2001) Generation of gradients having complex shapes using microfluidic networks. Anal Chem 73(6):1240–1246

    Google Scholar 

  • Deshmukh AA, Liepmann D, Pisano AP (2000) Continuous micromixer with pulsatile micropumps. In: Technical digest of the IEEE solid state sensor and actuator workshop (Hilton Head Island, SC). IEEE, Washington, DC

    Google Scholar 

  • Dongeun H, Wei G, Yoko K, James BG, Shuichi T (2005) Microfluidics for flow cytometric analysis of cells and particles. Physiol Meas 26(3):R73

    Google Scholar 

  • Döpper J, Clemens M, Ehrfeld W, Jung S, Kaemper K, Lehr H (1997) Micro gear pumps for dosing of viscous fluids. J Micromech Microeng 7(3):230

    Google Scholar 

  • Du L, Zhe J (2011) A high throughput inductive pulse sensor for online oil debris monitoring. Tribol Int 44(2):175–179

    Google Scholar 

  • Duffy DC, Gillis HL, Lin J, Sheppard NF, Kellogg GJ (1999) Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays. Anal Chem 71(20):4669–4678

    Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974–4984

    Google Scholar 

  • Easley CJ, Karlinsey JM, Bienvenue JM, Legendre LA, Roper MG, Feldman SH, Hughes MA, Hewlett EL, Merkel TJ, Ferrance JP, Landers JP (2006) A fully integrated microfluidic genetic analysis system with sample-in–answer-out capability. Proc Natl Acad Sci 103(51):19272–19277

    Google Scholar 

  • El Moctar AO, Aubry N, Batton J (2003) Electro-hydrodynamic micro-fluidic mixer. Lab Chip 3(4):273–280

    Google Scholar 

  • Erickson KA, Wilding P (1993) Evaluation of a novel point-of-care system, the i-STAT portable clinical analyzer. Clin Chem 39(2):283–287

    Google Scholar 

  • Esashi M, Shoji S, Nakano A (1989) Normally closed microvalve and mircopump fabricated on a silicon wafer. Sensors Actuators 20(1–2):163–169

    Google Scholar 

  • Fahrenberg J, Bier W, Maas D, Menz W, Ruprecht R, Schomburg WK (1995) A microvalve system fabricated by thermoplastic molding. J Micromech Microeng 5(2):169

    Google Scholar 

  • Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3(3):245–281

    Google Scholar 

  • Feigl F (1935) Qualitative Analyse mit hilfe von Tuepfelreaktionen : theoretische Grundlagen, praktische Ausfuehrung und Anwendung. Akademische Verlagsgesellschaft, Leipzig

    Google Scholar 

  • Feng G-H, Chou Y-C (2011) Fabrication and characterization of thermally driven fast turn-on microvalve with adjustable backpressure design. Microelectron Eng 88(2):187–194

    Google Scholar 

  • Fletcher PDI, Haswell SJ, Pombo-Villar E, Warrington BH, Watts P, Wong SYF, Zhang X (2002) Micro reactors: principles and applications in organic synthesis. Tetrahedron 58(24):4735–4757

    Google Scholar 

  • Folta JA, Raley NF, Hee EW (1992) Design, fabrication and testing of a miniature peristaltic membrane pump. In: Solid-state sensor and actuator workshop, 1992 5th technical digest, 22–25 June 1992. IEEE, Washington, DC, pp 186–189. doi:10.1109/solsen.1992.228296

    Google Scholar 

  • Fréchette LG, Jacobson SA, Breuer KS, Ehrich FF, Ghodssi R, Khanna R, Wong CW, Zhang X, Schmidt MA, Epstein AH (2000) Demonstration of a microfabricated high-speed turbine supported on gas bearings. DTIC document

    Google Scholar 

  • Fredrickson CK, Fan ZH (2004) Macro-to-micro interfaces for microfluidic devices. Lab Chip 4(6):526–533

    Google Scholar 

  • Fu C, Rummler Z, Schomburg W (2003) Magnetically driven micro ball valves fabricated by multilayer adhesive film bonding. J Micromech Microeng 13(4):S96

    Google Scholar 

  • Fu LM, Yang RJ, Lin CH, Chien YS (2005) A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency. Electrophoresis 26(9):1814–1824

    Google Scholar 

  • Fuhr G (1997) From micro field cages for living cells to Brownian pumps for submicron particles. In: Proceedings of the 1997 international symposium on micromechatronics and human science, 1997. IEEE, Washington, DC, pp 1–4

    Google Scholar 

  • Fuhr G, Hagedorn R, Muller T, Benecke W, Wagner B (1992) Microfabricated electrohydrodynamic (EHD) pumps for liquids of higher conductivity. J Microelectromech Syst 1(3):141–146

    Google Scholar 

  • Fuhr G, Schnelle T, Wagner B (1994) Travelling wave-driven microfabricated electrohydrodynamic pumps for liquids. J Micromech Microeng 4(4):217

    Google Scholar 

  • Fujii T, Sando Y, Higashino K, Fujii Y (2003) A plug and play microfluidic device. Lab Chip 3(3):193–197

    Google Scholar 

  • Funfak A, Brösing A, Brand M, Köhler JM (2007) Micro fluid segment technique for screening and development studies on Danio rerio embryos. Lab Chip 7(9):1132–1138

    Google Scholar 

  • Gass V, van der Schoot BH, Jeanneret S, de Rooij NF (1994) Integrated flow-regulated silicon micropump. Sensors Actuators A Phys 43(1–3):335–338

    Google Scholar 

  • Geng X, Yuan H, Oguz HN, Prosperetti A (2001) Bubble-based micropump for electrically conducting liquids. J Micromech Microeng 11(3):270

    Google Scholar 

  • Gerlach T (1998) Microdiffusers as dynamic passive valves for micropump applications. Sensors Actuators A Phys 69(2):181–191

    MathSciNet  Google Scholar 

  • Gerlach T, Wurmus H (1995) Working principle and performance of the dynamic micropump. Sensors Actuators A Phys 50(1–2):135–140

    Google Scholar 

  • Ghindilis AL, Smith MW, Schwarzkopf KR, Roth KM, Peyvan K, Munro SB, Lodes MJ, Stöver AG, Bernards K, Dill K, McShea A (2007) CombiMatrix oligonucleotide arrays: genotyping and gene expression assays employing electrochemical detection. Biosens Bioelectron 22(9–10):1853–1860

    Google Scholar 

  • Glasgow I, Aubry N (2003) Enhancement of microfluidic mixing using time pulsing. Lab Chip 3(2):114–120

    Google Scholar 

  • Go JS, Shoji S (2004) A disposable, dead volume-free and leak-free in-plane PDMS microvalve. Sensors Actuators A Phys 114(2–3):438–444

    Google Scholar 

  • Gobby D, Angeli P, Gavriilidis A (2001) Mixing characteristics of T-type microfluidic mixers. J Micromech Microeng 11(2):126

    Google Scholar 

  • Goetz H, Kuschel M, Wulff T, Sauber C, Miller C, Fisher S, Woodward C (2004) Comparison of selected analytical techniques for protein sizing, quantitation and molecular weight determination. J Biochem Biophys Methods 60(3):281–293

    Google Scholar 

  • Goll C, Bacher W, Büstgens B, Maas D, Ruprecht R, Schomburg WK (1997) An electrostatically actuated polymer microvalve equipped with a movable membrane electrode. J Micromech Microeng 7(3):224

    Google Scholar 

  • Gorkin R, Park J, Siegrist J, Amasia M, Lee BS, Park J-M, Kim J, Kim H, Madou M, Cho Y-K (2010) Centrifugal microfluidics for biomedical applications. Lab Chip 10(14):1758–1773

    Google Scholar 

  • Gravesen P, Branebjerg J, Jensen OS (1993) Microfluidics-a review. J Micromech Microeng 3(4):168

    Google Scholar 

  • Greenacre CB, Flatland B, Souza MJ, Fry MM (2008) Comparison of avian biochemical test results with abaxis VetScan and Hitachi 911 analyzers. J Avian Med Surg 22(4):291–299

    Google Scholar 

  • Grover WH, Skelley AM, Liu CN, Lagally ET, Mathies RA (2003) Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sens Actuators B 89(3):315–323

    Google Scholar 

  • Gruhl FJ, Länge K (2014) Surface acoustic wave (SAW) biosensor for rapid and label-free detection of penicillin G in milk. Food Anal Methods 7(2):430–437

    Google Scholar 

  • Gu W, Zhu X, Futai N, Cho BS, Takayama S (2004) Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proc Natl Acad Sci U S A 101(45):15861–15866

    Google Scholar 

  • Guan J-G, Miao Y-Q, Zhang Q-J (2004) Impedimetric biosensors. J Biosci Bioeng 97(4):219–226

    Google Scholar 

  • Gui L, Liu J (2004) Ice valve for a mini/micro flow channel. J Micromech Microeng 14(2):242–246

    Google Scholar 

  • Gui L, Yu BY, Ren CL, Huissoon JP (2011) Microfluidic phase change valve with a two-level cooling/heating system. Microfluid Nanofluid 10(2):435–445

    Google Scholar 

  • Guttenberg Z, Müller H, Habermüller H, Geisbauer A, Pipper J, Felbel J, Kielpinski M, Scriba J, Wixforth A (2005) Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip 5(3):308–317

    Google Scholar 

  • Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7(9):1094–1110

    Google Scholar 

  • Handique K, Burke D, Mastrangelo C, Burns M (2001) On-chip thermopneumatic pressure for discrete drop pumping. Anal Chem 73(8):1831–1838

    Google Scholar 

  • Hannig C, Dirschka M, Länge K, Neumaier S, Rapp BE (2010) Synthesis and application of photo curable perfluoropolyethers as new material for microfluidics. Procedia Engineering 5:866–869

    Google Scholar 

  • Hao R, Wang D, Zhang X, Zuo G, Wei H, Yang R, Zhang Z, Cheng Z, Guo Y, Cui Z (2009) Rapid detection of Bacillus anthracis using monoclonal antibody functionalized QCM sensor. Biosens Bioelectron 24(5):1330–1335

    Google Scholar 

  • Hartshorne H, Backhouse CJ, Lee WE (2004) Ferrofluid-based microchip pump and valve. Sens Actuators B 99(2–3):592–600

    Google Scholar 

  • Hasegawa T, Nakashima K, Omatsu F, Ikuta K (2008) Multi-directional micro-switching valve chip with rotary mechanism. Sensors Actuators A Phys 143(2):390–398

    Google Scholar 

  • Hatch A, Kamholz AE, Holman G, Yager P, Bohringer KF (2001) A ferrofluidic magnetic micropump. J Microelectromech Syst 10(2):215–221

    Google Scholar 

  • He B, Burke BJ, Zhang X, Zhang R, Regnier FE (2001) A picoliter-volume mixer for microfluidic analytical systems. Anal Chem 73(9):1942–1947

    Google Scholar 

  • Heckele M, Schomburg WK (2004) Review on micro molding of thermoplastic polymers. J Micromech Microeng 14(3):R1–R14

    Google Scholar 

  • Hessel V, Hardt S, Löwe H, Schönfeld F (2003) Laminar mixing in different interdigital micromixers: I. Experimental characterization. AIChE J 49(3):566–577

    Google Scholar 

  • Hinsmann P, Frank J, Svasek P, Harasek M, Lendl B (2001) Design, simulation and application of a new micromixing device for time resolved infrared spectroscopy of chemical reactions in solution. Lab Chip 1(1):16–21

    Google Scholar 

  • Hong C-C, Chang P-H, Lin C-C, Hong C-L (2010a) A disposable microfluidic biochip with on-chip molecularly imprinted biosensors for optical detection of anesthetic propofol. Biosens Bioelectron 25(9):2058–2064

    Google Scholar 

  • Hong C-C, Choi J-W, Ahn C (2001) A novel in-plane passive micromixer using Coanda effect. In: Ramsey JM, Berg A (eds) Micro total analysis systems. Springer, Dordrecht, The Netherlands, pp 31–33. doi:10.1007/978-94-010-1015-3_11

    Google Scholar 

  • Hong C-C, Choi J-W, Ahn CH (2004) A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab Chip 4(2):109–113

    Google Scholar 

  • Hong J, Choi JS, Han G, Kang JK, Kim C-M, Kim TS, Yoon DS (2006) A Mach-Zehnder interferometer based on silicon oxides for biosensor applications. Anal Chim Acta 573–574:97–103

    Google Scholar 

  • Hong T-F, Ju W-J, Wu M-C, Tai C-H, Tsai C-H, Fu L-M (2010b) Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser. Microfluid Nanofluid 9(6):1125–1133

    Google Scholar 

  • Horade M, Mizuta Y, Kaji N, Higashiyama T, Arata H (2012) Plant-on-a-chip microfluidic-system for quantitative analysis of pollen tube guidance by signaling molecule: towards cell-to-cell communication study. In: Proc microTAS, 2012, pp 1027–1029

    Google Scholar 

  • Hua SZ, Sachs F, Yang DX, Chopra HD (2002) Microfluidic actuation using electrochemically generated bubbles. Anal Chem 74(24):6392–6396

    Google Scholar 

  • Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990

    Google Scholar 

  • Huang M-Z, Yang R-J, Tai C-H, Tsai C-H, Fu L-M (2006) Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel. Biomed Microdevices 8(4):309–315

    Google Scholar 

  • Huang S-B, Wu M-H, Cui Z, Cui Z, Lee G-B (2008) A membrane-based serpentine-shape pneumatic micropump with pumping performance modulated by fluidic resistance. J Micromech Microeng 18(4):045008

    Google Scholar 

  • Huang X, Gordon MJ, Zare RN (1988) Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis. Anal Chem 60(17):1837–1838

    Google Scholar 

  • Huh YS, Choi JH, Huh KA, Park TJ, Hong YK, Kim do H, Hong WH, Lee SY (2007) Microfluidic cell disruption system employing a magnetically actuated diaphragm. Electrophoresis 28(24):4748–4757

    Google Scholar 

  • Jang J, Lee SS (2000) Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sensors Actuators A Phys 80(1):84–89

    Google Scholar 

  • Jen C-P, Lin Y-C (2002) Design and simulation of bi-directional microfluid driving systems. J Micromech Microeng 12(2):115

    Google Scholar 

  • Jensen K (1998) Chemical kinetics: smaller, faster chemistry. Nature 393(6687):735–737

    Google Scholar 

  • Jensen KF (2006) Silicon-based microchemical systems: characteristics and applications. MRS Bull 31(02):101–107

    Google Scholar 

  • Jeon N, Chiu D, Wargo C, Wu H, Choi I, Anderson J, Whitesides G (2002) Microfluidics section: design and fabrication of integrated passive valves and pumps for flexible polymer 3-dimensional microfluidic systems. Biomed Microdevices 4(2):117–121

    Google Scholar 

  • Jeong OC, Konishi S (2008) Fabrication of a peristaltic micro pump with novel cascaded actuators. J Micromech Microeng 18(2):025022

    Google Scholar 

  • Jeong OC, Yang SS (2000) Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm. Sensors Actuators A Phys 83(1–3):249–255

    Google Scholar 

  • Jeong S-i, Seyed-Yagoobi J (2002) Experimental study of electrohydrodynamic pumping through conduction phenomenon. J Electrost 56(2):123–133

    Google Scholar 

  • Jerman H (1994) Electrically activated normally closed diaphragm valves. J Micromech Microeng 4(4):210

    Google Scholar 

  • Jiang F, Drese K, Hardt S, Küpper M, Schönfeld F (2004) Helical flows and chaotic mixing in curved micro channels. AIChE J 50(9):2297–2305

    Google Scholar 

  • Johnson RD, Badr IHA, Barrett G, Lai S, Lu Y, Madou MJ, Bachas LG (2001) Development of a fully integrated analysis system for ions based on ion-selective optodes and centrifugal microfluidics. Anal Chem 73(16):3940–3946

    Google Scholar 

  • Johnston I, Tracey M, Davis J, Tan C (2005) Microfluidic solid phase suspension transport with an elastomer-based, single piezo-actuator, micro throttle pump. Lab Chip 5(3):318–325

    Google Scholar 

  • Joo B-S, Huh J-S, Lee D-D (2007) Fabrication of polymer SAW sensor array to classify chemical warfare agents. Sens Actuators B 121(1):47–53

    Google Scholar 

  • Jorgenson JW, Lukacs KD (1981) Free-zone electrophoresis in glass capillaries. Clin Chem 27(9):1551–1553

    Google Scholar 

  • Ju W-J, Fu L-M, Yang R-J, Lee C-L (2012) Distillation and detection of SO2 using a microfluidic chip. Lab Chip 12(3):622–626

    Google Scholar 

  • Judy JW, Tamagawa T, Polla DL (1991) Surface-machined micromechanical membrane pump. In: Micro electro mechanical systems, 1991, MEMS’91, proceedings An investigation of micro structures, sensors, actuators, machines and robots, 30 Jan–2 Feb 1991. IEEE, Washington, DC, pp 182–186. doi:10.1109/memsys.1991.114792

    Google Scholar 

  • Jun TK (1998) Valveless pumping using traversing vapor bubbles in microchannels. J Appl Phys 83(11):5658–5664

    Google Scholar 

  • Juncker D, Schmid H, Drechsler U, Wolf H, Wolf M, Michel B, de Rooij N, Delamarche E (2002) Autonomous microfluidic capillary system. Anal Chem 74(24):6139–6144

    Google Scholar 

  • Kahn H, Huff MA, Heuer AH (1998) The TiNi shape-memory alloy and its applications for MEMS. J Micromech Microeng 8(3):213

    Google Scholar 

  • Kang TG, Kwon TH (2004) Colored particle tracking method for mixing analysis of chaotic micromixers. J Micromech Microeng 14(7):891

    Google Scholar 

  • Kataoka DE, Troian SM (1999) Patterning liquid flow on the microscopic scale. Nature 402(6763):794–797

    Google Scholar 

  • Kawakatsu T, Kikuchi Y, Nakajima M (1997) Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J Amer Oil Chem Soc 74(3):317–321

    Google Scholar 

  • Kawakatsu T, Trägårdh G, Kikuchi Y, Nakajima M, Komori H, Yonemoto T (2000) Effect of microchannel structure on droplet size during crossflow microchannel emulsification. J Surfact Deterg 3(3):295–302

    Google Scholar 

  • Kazuo H, Ryutaro M (2000) A pneumatically-actuated three-way microvalve fabricated with polydimethylsiloxane using the membrane transfer technique. J Micromech Microeng 10(3):415

    Google Scholar 

  • Khan MF, Schmid S, Larsen PE, Davis ZJ, Yan W, Stenby EH, Boisen A (2013) Online measurement of mass density and viscosity of pL fluid samples with suspended microchannel resonator. Sens Actuators B 185:456–461

    Google Scholar 

  • Khoo M, Liu C (2001) Micro magnetic silicone elastomer membrane actuator. Sensors Actuators A Phys 89(3):259–266

    Google Scholar 

  • Kim DS, Lee SW, Kwon TH, Lee SS (2004) A barrier embedded chaotic micromixer. J Micromech Microeng 14(6):798

    Google Scholar 

  • Kim J, Baek J, Lee K, Park Y, Sun K, Lee T, Lee S (2006) Photopolymerized check valve and its integration into a pneumatic pumping system for biocompatible sample delivery. Lab Chip 6(8):1091–1094

    Google Scholar 

  • Kim J, Byun D, Mauk MG, Bau HH (2009) A disposable, self-contained PCR chip. Lab Chip 9(4):606–612

    Google Scholar 

  • Kim P, Kwon KW, Park MC, Lee SH, Kim SM, Suh KY (2008) Soft lithography for microfluidics: a review. Biochip Journal 2:1–11

    Google Scholar 

  • Kirby BJ, Shepodd TJ, Hasselbrink EF Jr (2002) Voltage-addressable on/off microvalves for high-pressure microchip separations. J Chromatogr A 979(1–2):147–154

    Google Scholar 

  • Klintberg L, Karlsson M, Stenmark L, Schweitz J-Å, Thornell G (2002) A large stroke, high force paraffin phase transition actuator. Sensors Actuators A Phys 96(2–3):189–195

    Google Scholar 

  • Knight JB, Vishwanath A, Brody JP, Austin RH (1998) Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett 80(17):3863

    Google Scholar 

  • Koch M, Chatelain D, Evans AGR, Brunnschweiler A (1998) Two simple micromixers based on silicon. J Micromech Microeng 8(2):123

    Google Scholar 

  • Koch M, Evans AGR, Brunnschweiler A (1997) Characterization of micromachined cantilever valves. J Micromech Microeng 7(3):221

    Google Scholar 

  • Koch M, Witt H, Evans A, Brunnschweiler A (1999) Improved characterization technique for micromixers. J Micromech Microeng 9(2):156

    Google Scholar 

  • Kohl M, Dittmann D, Quandt E, Winzek B (2000) Thin film shape memory microvalves with adjustable operation temperature. Sensors Actuators A Phys 83(1–3):214–219

    Google Scholar 

  • Kohl M, Dittmann D, Quandt E, Winzek B, Miyazaki S, Allen DM (1999a) Shape memory microvalves based on thin films or rolled sheets. Mater Sci Eng A 273–275:784–788

    Google Scholar 

  • Kohl M, Skrobanek KD, Miyazaki S (1999b) Development of stress-optimised shape memory microvalves. Sensors Actuators A Phys 72(3):243–250

    Google Scholar 

  • Kohlrausch F (1897) Ueber Concentrations-Verschiebungen durch Elektrolyse im Innern von Lösungen und Lösungsgemischen. Ann Phys Chem 62:209–239

    MATH  Google Scholar 

  • Kopf-Sill AR (2002) PROFILESuccesses and challenges of lab-on-a-chip. Lab Chip 2(3):42N–47N

    Google Scholar 

  • Kortmann H, Blank LM, Schmid A (2011) Single cell analytics: an overview. In: High resolution microbial single cell analytics. Springer, Dordrecht, The Netherlands, pp 99–122

    Google Scholar 

  • Kurosawa M, Watanabe T, Higuchi T (1995) Surface acoustic wave atomizer with pumping effect. In: Micro electro mechanical systems. IEEE, Washington, DC

    Google Scholar 

  • Kwang-Seok Y, Il-Joo C, Bu J-U, Chang-Jin K, Euisik Y (2002) A surface-tension driven micropump for low-voltage and low-power operations. J Microelectromech Syst 11(5):454–461

    Google Scholar 

  • Lagally E, Medintz I, Mathies R (2001) Single-molecule DNA amplification and analysis in an integrated microfluidic device. Anal Chem 73(3):565–570

    Google Scholar 

  • Lagally ET, Simpson PC, Mathies RA (2000) Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system. Sens Actuators B 63(3):138–146

    Google Scholar 

  • Länge K, Grimm S, Rapp M (2007) Chemical modification of parylene C coatings for SAW biosensors. Sens Actuators B 125(2):441–446

    Google Scholar 

  • Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391(5):1509–1519

    Google Scholar 

  • Lao AI, Lee TM, Hsing I, Ip NY (2000) Precise temperature control of microfluidic chamber for gas and liquid phase reactions. Sensors Actuators A Phys 84(1):11–17

    Google Scholar 

  • Laser DJ, Goodson KE, Santiago JG, Kenny TW (2002) High-frequency actuation with silicon electroosmotic micropumps. In: Proc 2002 solid-state sensor, actuator, and microsystems workshop (Hilton Head Island, SC). IEEE, Washington, DC

    Google Scholar 

  • Lee BS, Lee J-N, Park J-M, Lee J-G, Kim S, Cho Y-K, Ko C (2009) A fully automated immunoassay from whole blood on a disc. Lab Chip 9(11):1548–1555

    Google Scholar 

  • Lee J, Moon H, Fowler J, Schoellhammer T, Kim C-J (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sensors Actuators A Phys 95(2–3):259–268

    Google Scholar 

  • Lee S, Jeong O, Yang S (1998) The fabrication of a micro injector actuated by boiling and/or electrolysis. In: The eleventh annual international workshop on micro electro mechanical systems, 1998, MEMS 98. Proceedings. IEEE, Washington, DC, pp 51–56

    Google Scholar 

  • Lefèvre F, Chalifour A, Yu L, Chodavarapu V, Juneau P, Izquierdo R (2012) Algal fluorescence sensor integrated into a microfluidic chip for water pollutant detection. Lab Chip 12(4):787–793

    Google Scholar 

  • Legendre LA, Bienvenue JM, Roper MG, Ferrance JP, Landers JP (2006) A simple, valveless microfluidic sample preparation device for extraction and amplification of DNA from nanoliter-volume samples. Anal Chem 78(5):1444–1451

    Google Scholar 

  • Legiret F-E, Sieben VJ, Woodward EMS, Abi Kaed Bey SK, Mowlem MC, Connelly DP, Achterberg EP (2013) A high performance microfluidic analyser for phosphate measurements in marine waters using the vanadomolybdate method. Talanta 116:382–387

    Google Scholar 

  • Lemoff AV, Lee AP (2000) An AC magnetohydrodynamic micropump. Sens Actuators B 63(3):178–185

    Google Scholar 

  • Lemoff AV, Lee AP, Miles RR, McConaghy CF (1999) An AC magnetohydrodynamic micropump: towards a true integrated microfluidic system. In: 10th International conference on solid-state sensors and actuator, 1999. IEEE, Washington, DC, pp 1126–1129

    Google Scholar 

  • Lewis GG, Robbins JS, Phillips ST (2013) Point-of-care assay platform for quantifying active enzymes to femtomolar levels using measurements of time as the readout. Anal Chem 85(21):10432–10439

    Google Scholar 

  • Li B, Chen Q, Lee D-G, Woolman J, Carman GP (2005) Development of large flow rate, robust, passive micro check valves for compact piezoelectrically actuated pumps. Sensors Actuators A Phys 117(2):325–330

    Google Scholar 

  • Li H, Roberts D, Steyn J, Turner K, Carretero J, Yaglioglu O, Su Y, Saggere L, Hagood N, Spearing S (2000) A high frequency high flow rate piezoelectrically driven MEMS micropump. In: Proceedings IEEE solid state sensors and actuators workshop, Hilton Head. IEEE, Washington, DC

    Google Scholar 

  • Li X, Tian J, Garnier G, Shen W (2010) Fabrication of paper-based microfluidic sensors by printing. Colloids Surf B Biointerfaces 76(2):564–570

    Google Scholar 

  • Lichtenberg J, de Rooij NF, Verpoorte E (2002) Sample pretreatment on microfabricated devices. Talanta 56(2):233–266

    Google Scholar 

  • Lien K-Y, Lee W-C, Lei H-Y, Lee G-B (2007) Integrated reverse transcription polymerase chain reaction systems for virus detection. Biosens Bioelectron 22(8):1739–1748

    Google Scholar 

  • Lin C-F, Lee G-B, Wang C-H, Lee H-H, Liao W-Y, Chou T-C (2006) Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices. Biosens Bioelectron 21(8):1468–1475

    Google Scholar 

  • Lin C-H, Wang Y-N, Fu L-M (2012) Integrated microfluidic chip for rapid DNA digestion and time-resolved capillary electrophoresis analysis. Biomicrofluidics 6(1):012818

    Google Scholar 

  • Lin T-Y, Hu C-H, Chou T-C (2004) Determination of albumin concentration by MIP-QCM sensor. Biosens Bioelectron 20(1):75–81

    Google Scholar 

  • Liu B-F, Ozaki M, Hisamoto H, Luo Q, Utsumi Y, Hattori T, Terabe S (2004a) Microfluidic chip toward cellular ATP and ATP-conjugated metabolic analysis with bioluminescence detection. Anal Chem 77(2):573–578

    Google Scholar 

  • Liu L, Chen X, Niu X, Wen W, Sheng P (2006) Electrorheological fluid-actuated microfluidic pump. Appl Phys Lett 89(8):083505-083505–083503

    Google Scholar 

  • Liu RH, Bonanno J, Yang J, Lenigk R, Grodzinski P (2004b) Single-use, thermally actuated paraffin valves for microfluidic applications. Sens Actuators B 98(2–3):328–336

    Google Scholar 

  • Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, Aref H, Beebe DJ (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Syst 9(2):190–197

    Google Scholar 

  • Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P (2004c) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76(7):1824–1831

    Google Scholar 

  • Liu RH, Yu Q, Beebe DJ (2002) Fabrication and characterization of hydrogel-based microvalves. J Microelectromech Syst 11(1):45–53

    Google Scholar 

  • London A, Epstein A, Kerrebrock J (2001) High-pressure bipropellant microrocket engine. J Propuls Power 17(4):780–787

    Google Scholar 

  • Lu L-H, Ryu K, Liu C (2001) A novel microstirrer and arrays for microfluidic mixing. In: Ramsey JM, Berg A (eds) Micro total analysis systems 2001. Springer, Dordrecht, The Netherlands, pp 28–30. doi:10.1007/978-94-010-1015-3_10

    Google Scholar 

  • Lu L-H, Ryu KS, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Syst 11(5):462–469

    Google Scholar 

  • Lui C, Stelick S, Cady N, Batt C (2010) Low-power microfluidic electro-hydraulic pump (EHP). Lab Chip 10(1):74–79

    Google Scholar 

  • Luque A, Quero JM, Hibert C, Flückiger P, Gañán-Calvo AM (2005) Integrable silicon microfluidic valve with pneumatic actuation. Sensors Actuators A Phys 118(1):144–151

    Google Scholar 

  • Lloyd DK (1996) Capillary electrophoretic analyses of drugs in body fluids: sample pretreatment and methods for direct injection of biofluids. J Chromatogr A 735(1–2):29–42

    Google Scholar 

  • Madou MJ, Kellogg GJ (1998) LabCD: a centrifuge-based microfluidic platform for diagnostics. In: Proc. SPIE 3259, systems and technologies for clinical diagnostics and drug discovery, pp 80–93

    Google Scholar 

  • Marseille O, Habib N, Reul H, Rau G (1998) Implantable micropump system for augmented liver perfusion. Artif Organs 22(6):458–460

    Google Scholar 

  • Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46(8):1318–1320

    Google Scholar 

  • Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci 105(50):19606–19611

    Google Scholar 

  • Mason TG, Bibette J (1997) Shear rupturing of droplets in complex fluids. Langmuir 13(17):4600–4613

    Google Scholar 

  • McKnight TE, Culbertson CT, Jacobson SC, Ramsey JM (2001) Electroosmotically induced hydraulic pumping with integrated electrodes on microfluidic devices. Anal Chem 73(16):4045–4049

    Google Scholar 

  • Meckes A, Behrens J, Kayser O, Benecke W, Becker T, Müller G (1999) Microfluidic system for the integration and cyclic operation of gas sensors. Sensors Actuators A Phys 76(1–3):478–483

    Google Scholar 

  • Mehta G, Mehta K, Sud D, Song J, Bersano-Begey T, Futai N, Heo YS, Mycek M-A, Linderman J, Takayama S (2007) Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture. Biomed Microdevices 9(2):123–134

    Google Scholar 

  • Melin J, Giménez G, Roxhed N, van der Wijngaart W, Stemme G (2004a) A fast passive and planar liquid sample micromixer. Lab Chip 4(3):214–219

    Google Scholar 

  • Melin J, Roxhed N, Gimenez G, Griss P, van der Wijngaart W, Stemme G (2004b) A liquid-triggered liquid microvalve for on-chip flow control. Sens Actuators B 100(3):463–468

    Google Scholar 

  • Mengeaud V, Josserand J, Girault HH (2002) Mixing processes in a zigzag microchannel: finite element simulations and optical study. Anal Chem 74(16):4279–4286

    Google Scholar 

  • Meyvantsson I, Warrick JW, Hayes S, Skoien A, Beebe DJ (2008) Automated cell culture in high density tubeless microfluidic device arrays. Lab Chip 8(5):717–724

    Google Scholar 

  • Mikkers FEP, Everaerts FM, Verheggen TPEM (1979) High-performance zone electrophoresis. J Chromatogr A 169:11–20

    Google Scholar 

  • Minas G, Martins JS, Ribeiro JC, Wolffenbuttel RF, Correia JH (2004) Biological microsystem for measuring uric acid in biological fluids. Sensors Actuators A Phys 110(1–3):33–38

    Google Scholar 

  • Mirica KA, Weis JG, Schnorr JM, Esser B, Swager TM (2012) Mechanical drawing of gas sensors on paper. Angew Chem Int Ed 51(43):10740–10745

    Google Scholar 

  • Miyake R, Tsuzuki K, Takagi T, Imai K (1997) A highly sensitive and small flow-type chemical analysis system with integrated absorptiometric micro-flowcell. In: Tenth annual international workshop on micro electro mechanical systems, 1997, MEMS’97, Proceedings. IEEE, Washington, DC, pp 102–107

    Google Scholar 

  • Mizoguchi H, Ando M, Mizuno T, Takagi T, Nakajima N (1992) Design and fabrication of light driven micropump. In: Micro electro mechanical systems, 1992, MEMS’92, Proceedings. An investigation of micro structures, sensors, actuators, machines and robot, 4–7 Feb 1992. IEEE, Washington, DC, pp 31–36. doi:10.1109/memsys.1992.187686

    Google Scholar 

  • Moroney R, White R, Howe R (1991) Ultrasonically induced microtransport. In: Micro electro mechanical systems, 1991, MEMS’91, Proceedings. An investigation of micro structures, sensors, actuators, machines and robots. IEEE, Washington, DC, pp 277–282

    Google Scholar 

  • Münchow G, Dadic D, Doffing F, Hardt S, Drese K-S (2005) Automated chip-based device for simple and fast nucleic acid amplification. Expert Rev Mol Diagn 5(4):613–620

    Google Scholar 

  • Munson MS, Yager P (2004) Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer. Anal Chim Acta 507(1):63–71

    Google Scholar 

  • Myers FB, Henrikson RH, Bone J, Lee LP (2013) A handheld point-of-care genomic diagnostic system. PLoS One 8(8):e70266

    Google Scholar 

  • Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239

    Google Scholar 

  • Nakashima T, Shimizu M (1993) Preparation of monodispersed O/W emulsion by porous glass membrane. Kagaku Kogaku Ronbunshu 19:984

    Google Scholar 

  • Neagu CR, Gardeniers GE, Elwenspoek M, Kelly JJ (1996) An electrochemical microactuator: principle and first results. J Microelectromech Syst 5(1):2–9

    Google Scholar 

  • Neumann C, Voigt A, Pires L, Rapp BE (2013) Design and characterization of a platform for thermal actuation of up to 588 microfluidic valves. Microfluid Nanofluid 14(1–2):177–186

    Google Scholar 

  • Newman JD, Turner APF (2005) Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron 20(12):2435–2453

    Google Scholar 

  • Nguyen N-T, Huang X (2001) Miniature valveless pumps based on printed circuit board technique. Sensors Actuators A Phys 88(2):104–111

    Google Scholar 

  • Nguyen N-T, Meng AH, Black J, White RM (2000) Integrated flow sensor for in situ measurement and control of acoustic streaming in flexural plate wave micropumps. Sensors Actuators A Phys 79(2):115–121

    Google Scholar 

  • Nguyen N-T, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15(2):R1

    Google Scholar 

  • Nguyen TT, Goo NS, Nguyen VK, Yoo Y, Park S (2008) Design, fabrication, and experimental characterization of a flap valve IPMC micropump with a flexibly supported diaphragm. Sensors Actuators A Phys 141(2):640–648

    Google Scholar 

  • Niu X, Lee Y-K (2003) Efficient spatial-temporal chaotic mixing in microchannels. J Micromech Microeng 13(3):454

    Google Scholar 

  • Norbert S, Thomas F, Helmut W (1996) A modular microfluid system with an integrated micromixer. J Micromech Microeng 6(1):99

    Google Scholar 

  • Oddy M, Santiago J, Mikkelsen J (2001) Electrokinetic instability micromixing. Anal Chem 73(24):5822–5832

    Google Scholar 

  • Ogden S, Boden R, Hjort K (2010) A latchable valve for high-pressure microfluidics. J Microelectromech Syst 19(2):396–401

    Google Scholar 

  • Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16(5):R13–R39

    Google Scholar 

  • Oh KW, Park C, Namkoong K, Kim J, Ock K-S, Kim S, Kim Y-A, Cho Y-K, Ko C (2005) World-to-chip microfluidic interface with built-in valves for multichamber chip-based PCR assays. Lab Chip 5(8):845–850

    Google Scholar 

  • Ohori T, Shoji S, Miura K, Yotsumoto A (1998) Partly disposable three-way microvalve for a medical micro total analysis system (μTAS). Sensors Actuators A Phys 64(1):57–62

    Google Scholar 

  • Olsson A, Stemme G, Stemme E (1995) A valve-less planar fluid pump with two pump chambers. Sensors Actuators A Phys 47(1–3):549–556

    Google Scholar 

  • Olsson A, Stemme G, Stemme E (2000) Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps. Sensors Actuators A Phys 84(1–2):165–175

    Google Scholar 

  • Pal R, Yang M, Johnson BN, Burke DT, Burns MA (2004) Phase change microvalve for integrated devices. Anal Chem 76(13):3740–3748

    Google Scholar 

  • Pal R, Yang M, Lin R, Johnson B, Srivastava N, Razzacki S, Chomistek K, Heldsinger D, Haque R, Ugaz V (2005) An integrated microfluidic device for influenza and other genetic analyses. Lab Chip 5(10):1024–1032

    Google Scholar 

  • Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7(12):1644–1659

    Google Scholar 

  • Papageorgiou DT (1995) On the breakup of viscous liquid threads. Physics of Fluids (1994-present) 7(7):1529–1544

    MATH  Google Scholar 

  • Park S-J, Kim JK, Park J, Chung S, Chung C, Chang JK (2004) Rapid three-dimensional passive rotation micromixer using the breakup process. J Micromech Microeng 14(1):6

    Google Scholar 

  • Peige S, Zeno R, Werner Karl S (2004) Polymer micro piezo valve with a small dead volume. J Micromech Microeng 14(2):305

    Google Scholar 

  • Peirs J, Reynaerts D, Van Brussel H (2000) Design of miniature parallel manipulators for integration in a self-propelling endoscope. Sensors Actuators A Phys 85(1–3):409–417

    Google Scholar 

  • Petersen NJ, Mogensen KB, Kutter JP (2002) Performance of an in-plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices. Electrophoresis 23(20):3528–3536

    Google Scholar 

  • Petralia S, Verardo R, Klaric E, Cavallaro S, Alessi E, Schneider C (2013) In-Check system: a highly integrated silicon Lab-on-Chip for sample preparation, PCR amplification and microarray detection of nucleic acids directly from biological samples. Sens Actuators B 187:99–105

    Google Scholar 

  • Pfleging W, Torge M, Bruns M, Trouillet V, Welle A, Wilson S (2009) Laser- and UV-assisted modification of polystyrene surfaces for control of protein adsorption and cell adhesion. Appl Surf Sci 255(10):5453–5457

    Google Scholar 

  • Pickup JC, Shaw GW, Claremont DJ (1989) In vivo molecular sensing in diabetes mellitus: an implantable glucose sensor with direct electron transfer. Diabetologia 32(3):213–217

    Google Scholar 

  • Pires L, Sachsenheimer K, Kleintschek T, Waldbaur A, Schwartz T, Rapp BE (2013) Online monitoring of biofilm growth and activity using a combined multi-channel impedimetric and amperometric sensor. Biosens Bioelectron 47:157–163

    Google Scholar 

  • Piruska A, Nikcevic I, Lee SH, Ahn C, Heineman WR, Limbach PA, Seliskar CJ (2005) The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 5(12):1348–1354

    Google Scholar 

  • Pollack M, Shenderov A, Fair R (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2):96–101

    Google Scholar 

  • Pu Q, Oyesanya O, Thompson B, Liu S, Alvarez JC (2006) On-chip micropatterning of plastic (Cylic Olefin Copolymer, COC) microfluidic channels for the fabrication of biomolecule microarrays using photografting methods. Langmuir 23(3):1577–1583

    Google Scholar 

  • Puckett LG, Dikici E, Lai S, Madou M, Bachas LG, Daunert S (2004) Investigation into the applicability of the centrifugal microfluidics platform for the development of protein–ligand binding assays incorporating enhanced green fluorescent protein as a fluorescent reporter. Anal Chem 76(24):7263–7268

    Google Scholar 

  • Ramsey R, Ramsey J (1997) Generating electrospray from microchip devices using electroosmotic pumping. Anal Chem 69(6):1174–1178

    Google Scholar 

  • Rapp BE, Carneiro L, Laenge K, Rapp M (2009) An indirect microfluidic flow injection analysis (FIA) system allowing diffusion free pumping of liquids by using tetradecane as intermediary liquid. Lab Chip 9(2):354–356

    Google Scholar 

  • Rapp BE, Gruhl FJ, Länge K (2010) Biosensors with label-free detection designed for diagnostic applications. Anal Bioanal Chem 398(6):2403–2412

    Google Scholar 

  • Rapp BE, Schickling B, Prokop J, Piotter V, Rapp M, Laenge K (2011) Design and integration of a generic disposable array-compatible sensor housing into an integrated disposable indirect microfluidic flow injection analysis system. Biomed Microdevices 13(5):909–922

    Google Scholar 

  • Rapp R, Schomburg WK, Maas D, Schulz J, Stark W (1994) LIGA micropump for gases and liquids. Sensors Actuators A Phys 40(1):57–61

    Google Scholar 

  • Rasmussen A, Zaghloul ME (1999) The design and fabrication of microfluidic flow sensors. In: Proceedings of the 1999 I.E. international symposium on circuits and systems, 1999, ISCAS’99. IEEE, Washington, DC, pp 136–139

    Google Scholar 

  • Recknor JB, Sakaguchi DS, Mallapragada SK (2006) Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates. Biomaterials 27(22):4098–4108

    Google Scholar 

  • Rehm JE, Shepodd TJ, Hasselbrink EF (2001) Mobile flow control elements for high-pressure micro-analytical systems fabricated using in-situ polymerization. In: Ramsey JM, Berg A (eds) Micro total analysis systems. Springer, Dordrecht, The Netherlands, pp 227–229. doi:10.1007/978-94-010-1015-3_98

    Google Scholar 

  • Rich CA, Wise KD (2003) A high-flow thermopneumatic microvalve with improved efficiency and integrated state sensing. J Microelectromech Syst 12(2):201–208

    Google Scholar 

  • Richter A, Kuckling D, Howitz S, Gehring T, Arndt KF (2003) Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications. J Microelectromech Syst 12(5):748–753

    Google Scholar 

  • Richter A, Plettner A, Hofmann K, Sandmaier H (1991) A micromachined electrohydrodynamic (EHD) pump. Sensors Actuators A Phys 29(2):159–168

    Google Scholar 

  • Richter A, Sandmaier H (1990) An electrohydrodynamic micropump. In: Micro electro mechanical systems, 1990 Proceedings. An investigation of micro structures, sensors, actuators, machines and robots. IEEE, Washington, DC, pp 99–104

    Google Scholar 

  • Rife J, Bell M, Horwitz J, Kabler M, Auyeung R, Kim W (2000) Miniature valveless ultrasonic pumps and mixers. Sensors Actuators A Phys 86(1):135–140

    Google Scholar 

  • Roberts DC, Hanqing L, Steyn JL, Yaglioglu O, Spearing SM, Schmidt MA, Hagood NW (2003) A piezoelectric microvalve for compact high-frequency, high-differential pressure hydraulic micropumping systems. J Microelectromech Syst 12(1):81–92

    Google Scholar 

  • Rogge T, Rummler Z, Schomburg WK (2004) Polymer micro valve with a hydraulic piezo-drive fabricated by the AMANDA process. Sensors Actuators A Phys 110(1–3):206–212

    Google Scholar 

  • Ross D, Gaitan M, Locascio L (2001) Temperature measurement and control in microfluidic systems. In: Ramsey JM, Berg A (eds) Micro total analysis systems. Springer, Dordrecht, The Netherlands, pp 239–241. doi:10.1007/978-94-010-1015-3_102

    Google Scholar 

  • Ryu S, Yoo I, Song S, Yoon B, Kim J-M (2009) A thermoresponsive fluorogenic conjugated polymer for a temperature sensor in microfluidic devices. J Am Chem Soc 131(11):3800–3801

    Google Scholar 

  • Saarela V, Franssila S, Tuomikoski S, Marttila S, Ostman P, Sikanen T, Kotiaho T, Kostiainen R (2006) Re-usable multi-inlet PDMS fluidic connector. Sensors Actuators B Chem 114(1):552–557

    Google Scholar 

  • Sabourin D, Snakenborg D, Dufva M (2009) Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections. J Micromech Microeng 19(3):035021

    Google Scholar 

  • Sadler DJ, Oh KW, Ahn CH, Bhansali S, Henderson HT (1999) A new magnetically actuated microvalve for liquid and gas control applications. In: Proceedings of Transducers, 1999. pp 1812–1815

    Google Scholar 

  • Sammarco TS, Burns MA (1999) Thermocapillary pumping of discrete drops in microfabricated analysis devices. AIChE J 45(2):350–366

    Google Scholar 

  • Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25(4):316–319

    Google Scholar 

  • Satyanarayana S, McCormick DT, Majumdar A (2006) Parylene micro membrane capacitive sensor array for chemical and biological sensing. Sens Actuators B 115(1):494–502

    Google Scholar 

  • Sauer-Budge AF, Mirer P, Chatterjee A, Klapperich CM, Chargin D, Sharon A (2009) Low cost and manufacturable complete microTAS for detecting bacteria. Lab Chip 9(19):2803–2810

    Google Scholar 

  • Scott A, Au AK, Vinckenbosch E, Folch A (2013) A microfluidic D-subminiature connector. Lab Chip 13:2036–2039

    Google Scholar 

  • Schabmueller CGJ, Koch M, Mokhtari ME, Evans AGR, Brunnschweiler A, Sehr H (2002) Self-aligning gas/liquid micropump. J Micromech Microeng 12(4):420

    Google Scholar 

  • Schönfeld F, Hessel V, Hofmann C (2004) An optimised split-and-recombine micro-mixer with uniform ‘chaotic’ mixing. Lab Chip 4(1):65–69

    Google Scholar 

  • Schumacher S, Nestler J, Otto T, Wegener M, Ehrentreich-Förster E, Michel D, Wunderlich K, Palzer S, Sohn K, Weber A (2012) Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. Lab Chip 12(3):464–473

    Google Scholar 

  • Sen M, Wajerski D, Gad-el-Hak M (1996) A novel pump for MEMS applications. J Fluid Eng Trans ASME 118(3):624–627

    Google Scholar 

  • Shikida M, Sato K, Tanaka S, Kawamura Y, Fujisaki Y (1994) Electrostatically driven gas valve with high conductance. J Microelectromech Syst 3(2):76–80

    Google Scholar 

  • Sim WY, Yoon HJ, Jeong OC, Yang SS (2003) A phase-change type micropump with aluminum flap valves. J Micromech Microeng 13(2):286

    Google Scholar 

  • Sin A, Reardon CF, Shuler ML (2004) A self-priming microfluidic diaphragm pump capable of recirculation fabricated by combining soft lithography and traditional machining. Biotechnol Bioeng 85(3):359–363

    Google Scholar 

  • Singh MK, Anderson PD, Meijer HE (2009) Understanding and optimizing the SMX static mixer. Macromol Rapid Commun 30(4–5):362–376

    Google Scholar 

  • Smithies O (1955) Zone electrophoresis in starch gels - group variations in the serum proteins of normal human adults. Biochem J 61(4):629–641

    Google Scholar 

  • Smits JG (1985) Piezoelectric micropump for peristaltic fluid displacements. NL 8302860

    Google Scholar 

  • Smits JG (1990) Piezoelectric micropump with three valves working peristaltically. Sensors Actuators A Phys 21(1–3):203–206

    Google Scholar 

  • Song H, Bringer MR, Tice JD, Gerdts CJ, Ismagilov RF (2003) Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels. Appl Phys Lett 83(22):4664–4666

    Google Scholar 

  • Spencer WJ, Corbett WT, Dominguez LR, Shafer BD (1978) An electronically controlled piezoelectric insulin pump and valves. IEEE Trans Sonics Ultrasonics 25(3):153–156

    Google Scholar 

  • Star A, Tu E, Niemann J, Gabriel J-CP, Joiner CS, Valcke C (2006) Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc Natl Acad Sci U S A 103(4):921–926

    Google Scholar 

  • Strohmeier O, Emperle A, Roth G, Mark D, Zengerle R, von Stetten F (2013) Centrifugal gas-phase transition magnetophoresis (GTM) - a generic method for automation of magnetic bead based assays on the centrifugal microfluidic platform and application to DNA purification. Lab Chip 13(1):146–155

    Google Scholar 

  • Stroock AD, Dertinger SK, Ajdari A, Mezić I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295(5555):647–651

    Google Scholar 

  • Studer V, Jameson R, Pellereau E, Pépin A, Chen Y (2004) A microfluidic mammalian cell sorter based on fluorescence detection. Microelectron Eng 73–74:852–857

    Google Scholar 

  • Su Y-C, Lin L (2004) A water-powered micro drug delivery system. J Microelectromech Syst 13(1):75–82

    Google Scholar 

  • Sundararajan N, Kim D, Berlin AA (2005) Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography. Lab Chip 5(3):350–354

    Google Scholar 

  • Suzuki H, Ho C-M (2002) A magnetic force driven chaotic micro-mixer. In: The fifteenth IEEE international conference on micro electro mechanical systems, 2002. IEEE, Washington, DC, pp 40–43

    Google Scholar 

  • Suzuki H, Yoneyama R (2003) Integrated microfluidic system with electrochemically actuated on-chip pumps and valves. Sens Actuators B 96(1–2):38–45

    Google Scholar 

  • Suzuki K, Fujiki I, Hagura Y (1998) Preparation of corn oil/water and water/corn oil emulsions using PTFE membranes. Food Sci Tech Int Tokyo 4(2):164–167

    Google Scholar 

  • Takagi H, Maeda R, Ozaki K, Parameswaran M, Mehta M (1994) Phase transformation type micro pump. In: Proceedings, 5th international symposium on micro machine and human science, 1994. IEEE, Washington, DC, p 199

    Google Scholar 

  • Takao H, Miyamura K, Ebi H, Ashiki M, Sawada K, Ishida M (2005) A MEMS microvalve with PDMS diaphragm and two-chamber configuration of thermo-pneumatic actuator for integrated blood test system on silicon. Sensors Actuators A Phys 119(2):468–475

    Google Scholar 

  • Tan F, Leung PHM, Z-b L, Zhang Y, Xiao L, Ye W, Zhang X, Yi L, Yang M (2011) A PDMS microfluidic impedance immunosensor for E. coli O157:H7 and Staphylococcus aureus detection via antibody-immobilized nanoporous membrane. Sens Actuators B 159(1):328–335

    Google Scholar 

  • Tas N, Berenschot J, Lammerink T, Elwenspoek M, Van den Berg A (2002) Nanofluidic bubble pump using surface tension directed gas injection. Anal Chem 74(9):2224–2227

    Google Scholar 

  • Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220

    Google Scholar 

  • Terray A, Oakey J, Marr DW (2002) Microfluidic control using colloidal devices. Science 296(5574):1841–1844

    Google Scholar 

  • Terry SC, Jerman JH, Angell JB (1979) Gas-chromatographic air analyzer fabricated on a silicon-wafer. IEEE Trans Electron Devices 26(12):1880–1886

    Google Scholar 

  • Teymoori MM, Abbaspour-Sani E (2005) Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sensors Actuators A Phys 117(2):222–229

    Google Scholar 

  • Thomas L Jr, Bessman S (1975) Prototype for an implantable micropump powdered by piezoelectric disk benders. Trans Am Soc Artif Int Organs 21:516

    Google Scholar 

  • Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584

    Google Scholar 

  • Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166

    Google Scholar 

  • Tice JD, Lyon AD, Ismagilov RF (2004) Effects of viscosity on droplet formation and mixing in microfluidic channels. Anal Chim Acta 507(1):73–77

    Google Scholar 

  • Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the reynolds and the capillary numbers. Langmuir 19(22):9127–9133

    Google Scholar 

  • Tiensuu A-L, Öhman O, Lundbladh L, Larsson O (2000) Hydrophobic valves by ink-jet printing on plastic CDs with integrated microfluidics. In: Berg A, Olthuis W, Bergveld P (eds) Micro total analysis systems. Springer, Dordrecht, The Netherlands, pp 575–578. doi:10.1007/978-94-017-2264-3_135

    Google Scholar 

  • Tovar AR, Lee AP (2009) Lateral cavity acoustic transducer. Lab Chip 9(1):41–43

    Google Scholar 

  • Truckenmüller R, Rummler Z, Schaller T, Schomburg K (2002) Low-cost thermoforming of micro fluidic analysis chips. J Micromech Microeng 12(4):375–379

    Google Scholar 

  • Tsai J-H, Lin L (2002) Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump. Sensors Actuators A Phys 97:665–671

    Google Scholar 

  • Tsai JH, Liwei L (2002) A thermal-bubble-actuated micronozzle-diffuser pump. J Microelectromech Syst 11(6):665–671

    Google Scholar 

  • Tsai R-T, Wu C-Y (2011) An efficient micromixer based on multidirectional vortices due to baffles and channel curvature. Biomicrofluidics 5(1):014103

    Google Scholar 

  • Tsao T, Moroney R, Martin B, White R (1991) Electrochemical detection of localized mixing produced by ultrasonic flexural waves. In: Ultrasonics symposium, 1991, Proceedings. IEEE, Washington, DC, pp 937–940

    Google Scholar 

  • Umbanhowar PB, Prasad V, Weitz DA (1999) Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 16(2):347–351

    Google Scholar 

  • Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116

    Google Scholar 

  • Van de Pol FCM, Van Lintel HTG, Elwenspoek M, Fluitman JHJ (1990) A thermopneumatic micropump based on micro-engineering techniques. Sensors Actuators A Phys 21(1–3):198–202

    Google Scholar 

  • van der Wijngaart W, Ask H, Enoksson P, Stemme G (2002) A high-stroke, high-pressure electrostatic actuator for valve applications. Sensors Actuators A Phys 100(2–3):264–271

    Google Scholar 

  • van Kan JA, Zhang C, Perumal Malar P, van der Maarel JRC (2012) High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies. Biomicrofluidics 6(3):36502

    Google Scholar 

  • van Lintel HTG, van De Pol FCM, Bouwstra S (1988) A piezoelectric micropump based on micromachining of silicon. Sensors Actuators 15(2):153–167

    Google Scholar 

  • van Oudheusden BW (1992) Silicon thermal flow sensors. Sensors Actuators A Phys 30(1–2):5–26

    Google Scholar 

  • Veenstra T, Lammerink T, Elwenspoek M, Van Den Berg A (1999) Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems. J Micromech Microeng 9(2):199

    Google Scholar 

  • Vella SJ, Beattie P, Cademartiri R, Laromaine A, Martinez AW, Phillips ST, Mirica KA, Whitesides GM (2012) Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal Chem 84(6):2883–2891

    Google Scholar 

  • Vrouwe EX, Luttge R, van den Berg A (2004) Direct measurement of lithium in whole blood using microchip capillary electrophoresis with integrated conductivity detection. Electrophoresis 25(10–11):1660–1667

    Google Scholar 

  • Wagner B, Quenzer HJ, Hoerschelmann S, Lisec T, Juerss M (1996) Bistable microvalve with pneumatically coupled membranes. In: The ninth annual international workshop on micro electro mechanical systems (MEMS 1996), 11–15 Feb 1996. IEEE, Washington, DC, pp 384–388. doi:10.1109/MEMSYS.1996.494012

    Google Scholar 

  • Waibel G, Kohnle J, Cernosa R, Storz M, Schmitt M, Ernst H, Sandmaier H, Zengerle R, Strobelt T (2003) Highly integrated autonomous microdosage system. Sensors Actuators A Phys 103(1–2):225–230

    Google Scholar 

  • Waldbaur A, Carneiro B, Hettich P, Wilhelm E, Rapp BE (2013a) Computer-aided microfluidics (CAMF): from digital 3D-CAD models to physical structures within a day. Microfluid Nanofluid 15(5):625–635

    Google Scholar 

  • Waldbaur A, Kittelmann J, Radtke CP, Hubbuch J, Rapp BE (2013b) Microfluidics on liquid handling stations (μF-on-LHS): an industry compatible chip interface between microfluidics and automated liquid handling stations. Lab Chip 13(12):2337–2343

    Google Scholar 

  • Waldbaur A, Rapp H, Länge K, Rapp BE (2011) Let there be chip – towards rapid prototyping of microfluidic devices: one-step manufacturing processes (cover article). Anal Methods 3(12):2681–2716

    Google Scholar 

  • Waldbaur A, Waterkotte B, Schmitz K, Rapp BE (2012) Maskless projection lithography for the fast and flexible generation of grayscale protein patterns. Small 8(10):1570–1578

    Google Scholar 

  • Walker G, Ozers M, Beebe D (2004) Cell infection within a microfluidic device using virus gradients. Sens Actuators B 98(2):347–355

    Google Scholar 

  • Walker GM, Beebe DJ (2002) A passive pumping method for microfluidic devices. Lab Chip 2(3):131–134

    Google Scholar 

  • Wang H, Chen Y, Hassibi A, Scherer A, Hajimiri A (2009) A frequency-shift CMOS magnetic biosensor array with single-bead sensitivity and no external magnet. In: IEEE international, 2009, solid-state circuits conference-digest of technical papers, 2009, ISSCC 2009. IEEE, Washington, DC, pp 438–439

    Google Scholar 

  • Wang H, Iovenitti P, Harvey E, Masood S (2002) Optimizing layout of obstacles for enhanced mixing in microchannels. Smart Mater Struct 11(5):662

    Google Scholar 

  • Wang Y-C, Choi MH, Han J (2004) Two-dimensional protein separation with advanced sample and buffer isolation using microfluidic valves. Anal Chem 76(15):4426–4431

    Google Scholar 

  • Wang Y, Zhe J, Chung BT, Dutta P (2008) A rapid magnetic particle driven micromixer. Microfluid Nanofluid 4(5):375–389

    Google Scholar 

  • Wego A, Pagel L (2001) A self-filling micropump based on PCB technology. Sensors Actuators A Phys 88(3):220–226

    Google Scholar 

  • Weigl BH, Kriebel J, Mayes KJ, Bui T, Yager P (1999) Whole blood diagnostics in standard gravity and microgravity by use of microfluidic structures (T-sensors). Microchim Acta 131(1–2):75–83

    Google Scholar 

  • Wen CY, Yeh CP, Tsai CH, Fu LM (2009) Rapid magnetic microfluidic mixer utilizing AC electromagnetic field. Electrophoresis 30(24):4179–4186

    Google Scholar 

  • Widmer HM (1983) Trends in industrial analytical-chemistry. Trac Trends Anal Chem 2(1):R8–R10

    Google Scholar 

  • Wilhelm E, Neumann C, Duttenhofer T, Pires L, Rapp BE (2013a) Connecting microfluidic chips using a chemically inert, reversible, multichannel chip-to-world-interface. Lab Chip 13(22):4343–4351

    Google Scholar 

  • Wilhelm E, Neumann C, Sachsenheimer K, Schmitt T, Lange K, Rapp BE (2013b) Rapid bonding of polydimethylsiloxane to stereolithographically manufactured epoxy components using a photogenerated intermediary layer. Lab Chip 13(12):2268–2271

    Google Scholar 

  • Winkley J, Yanowski L, Hynes W (1937) A systematic semimicro procedure for the qualitative analysis of the commoner cations. Mikrochemie 21(1):102–115

    Google Scholar 

  • Witek MA, Llopis SD, Wheatley A, McCarley RL, Soper SA (2006) Purification and preconcentration of genomic DNA from whole cell lysates using photoactivated polycarbonate (PPC) microfluidic chips. Nucleic Acids Res 34(10):e74

    Google Scholar 

  • Woias P, Hauser K, Yacoub-George E (2000) An active silicon micromixer for μTAS applications. In: Berg A, Olthuis W, Bergveld P (eds) Micro total analysis systems. Springer, Dordrecht, The Netherlands, pp 277–282

    Google Scholar 

  • Wong SH, Ward MC, Wharton CW (2004) Micro T-mixer as a rapid mixing micromixer. Sens Actuators B 100(3):359–379

    Google Scholar 

  • Worgull M, Kolew A, Heilig M, Schneider M, Dinglreiter H, Rapp BE (2011) Hot embossing of high performance polymers. Microsyst Technol 17(4):585–592

    Google Scholar 

  • Wu C-Y, Liao W-H, Tung Y-C (2011) Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems. Lab Chip 11(10):1740–1746

    Google Scholar 

  • Xing Y, Grosjean C, Yu-Chong T (1999) Design, fabrication, and testing of micromachined silicone rubber membrane valves. J Microelectromech Syst 8(4):393–402

    Google Scholar 

  • Yamahata C, Lacharme F, Burri Y, Gijs MAM (2005) A ball valve micropump in glass fabricated by powder blasting. Sens Actuators B 110(1):1–7

    Google Scholar 

  • Yan D, Yang C, Miao J, Lam Y, Huang X (2009) Enhancement of electrokinetically driven microfluidic T‐mixer using frequency modulated electric field and channel geometry effects. Electrophoresis 30(18):3144–3152

    Google Scholar 

  • Yang B, Lin Q (2009) A latchable phase-change microvalve with integrated heaters. J Microelectromech Syst 18(4):860–867

    Google Scholar 

  • Yang J, Liu Y, Rauch CB, Stevens RL, Liu RH, Lenigk R, Grodzinski P (2002) High sensitivity PCR assay in plastic micro reactors. Lab Chip 2(4):179–187

    Google Scholar 

  • Yang X, Grosjean C, Tai Y-C, Ho C-M (1998) A MEMS thermopneumatic silicone rubber membrane valve. Sensors Actuators A Phys 64(1):101–108

    Google Scholar 

  • Yang Z, Goto H, Matsumoto M, Maeda R (2000) Active micromixer for microfluidic systems using lead-zirconate-titanate(PZT)-generated ultrasonic vibration. Electrophoresis 21(1):116–119

    Google Scholar 

  • Yaralioglu GG, Wygant IO, Marentis TC, Khuri-Yakub BT (2004) Ultrasonic mixing in microfluidic channels using integrated transducers. Anal Chem 76(13):3694–3698

    Google Scholar 

  • Yardley SJS, Linkenheimer WH (1971) Osmotic fluid reservoir for osmotically activated long-term continuous injector device. United States Patent

    Google Scholar 

  • Yasuda K (2000) Non-destructive, non-contact handling method for biomaterials in micro-chamber by ultrasound. Sens Actuators B 64(1):128–135

    Google Scholar 

  • Ymeti A, Greve J, Lambeck PV, Wink T, Stephan WFM, Tom AM, Wijn RR, Heideman RG, Subramaniam V, Kanger JS (2006) Fast, Ultrasensitive Virus Detection Using a Young Interferometer Sensor. Nano Lett 7(2):394–397

    Google Scholar 

  • Yoshida K, Kikuchi M, Park JH, Yokota S (2002) Fabrication of micro electro-rheological valves (ER valves) by micromachining and experiments. Sensors Actuators A Phys 95(2–3):227–233

    Google Scholar 

  • Young EW, Berthier E, Guckenberger DJ, Sackmann E, Lamers C, Meyvantsson I, Huttenlocher A, Beebe DJ (2011) Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays. Anal Chem 83(4):1408–1417

    Google Scholar 

  • Yu-Chuan S, Liwei L, Pisano AP (2002) A water-powered osmotic microactuator. J Microelectromech Syst 11(6):736–742

    Google Scholar 

  • Zeng J, Banerjee D, Deshpande M, Gilbert JR, Duffy DC, Kellogg GJ (2000) Design analyses of capillary burst valves in centrifugal microfluidics. In: Proceedings of the micro total analysis systems symposium (lTAS 2000) May, 2000. pp 14–18

    Google Scholar 

  • Zeng S, Chen C-H, Mikkelsen JC Jr, Santiago JG (2001) Fabrication and characterization of electroosmotic micropumps. Sens Actuators B 79(2–3):107–114

    Google Scholar 

  • Zeng S, Chen C-H, Santiago JG, Chen J-R, Zare RN, Tripp JA, Svec F, Fréchet JM (2002) Electroosmotic flow pumps with polymer frits. Sens Actuators B 82(2):209–212

    Google Scholar 

  • Zengerle R, Richter A, Sandmaier H (1992) A micro membrane pump with electrostatic actuation. In: Micro electro mechanical systems, 1992, MEMS’92, Proceedings An investigation of micro structures, sensors, actuators, machines and robot, 4–7 Feb 1992. IEEE, Washington, DC, pp 19–24. doi:10.1109/memsys.1992.187684

    Google Scholar 

  • Zengerle R, Richter M (1994) Simulation of microfluid systems. J Micromech Microeng 4(4):192

    Google Scholar 

  • Zengerle R, Ulrich J, Kluge S, Richter M, Richter A (1995) A bidirectional silicon micropump. Sensors Actuators A Phys 50(1–2):81–86

    Google Scholar 

  • Zhao B, Moore JS, Beebe DJ (2001) Surface-directed liquid flow inside microchannels. Science 291(5506):1023–1026

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastian E. Rapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Neumann, C., Rapp, B.E. (2015). Fluidic Platforms and Components of Lab-on-a-Chip devices. In: Castillo-León, J., Svendsen, W. (eds) Lab-on-a-Chip Devices and Micro-Total Analysis Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-08687-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08687-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08686-6

  • Online ISBN: 978-3-319-08687-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics