Fluidic Platforms and Components of Lab-on-a-Chip devices

  • Christiane Neumann
  • Bastian E. RappEmail author


In recent years the distribution of Lab-on-a-chip devices as well as micro-total analysis systems in applications such as analytical chemistry, biochemistry, biotechnology, microsystems technology, or clinical diagnostics has increased significantly. In order to allow multiple assays to be carried out on this devices components that enable fast tests and quantitative measurements are needed. The first systems which fulfilled these requirements were paper based devices. The development of these systems was based on chromatographic techniques. The basic principle is already known as so termed spot tests since the 1930s. The trend to take more and more applications out of the laboratory to the user started the development of a large number of platforms for point of care devices. These platforms can be driven by different ways, e.g., pressure, capillary flow, or electro kinetic effects. Complex applications need additional fluidic components such as pumps, valves, sensors, or mixers. In this chapter different fluidic platforms as well as fluidic components will be described. Applications of platforms and integrated components are exemplarily demonstrated by means of case studies.


Microfluidic Channel Check Valve Passive Valve Polymerase Chain Reaction Chamber Centrifugal Microfluidics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abe K, Kotera K, Suzuki K, Citterio D (2010) Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem 398(2):885–893Google Scholar
  2. Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80(18):6928–6934Google Scholar
  3. Adams ML, Johnston ML, Scherer A, Quake SR (2005) Polydimethylsiloxane based microfluidic diode. J Micromech Microeng 15(8):1517Google Scholar
  4. Ahmed D, Mao X, Juluri BK, Huang TJ (2009) A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluid Nanofluid 7(5):727–731Google Scholar
  5. Ahn CH, Allen MG (1995) Fluid micropumps based on rotary magnetic actuators. In: IEEE micro electro mechanical systems workshop (MEMS’95), Amsterdam, Netherlands. IEEE, Washington, DC, pp 408–412Google Scholar
  6. Ahn CH, Jin-Woo C, Beaucage G, Nevin JH, Jeong-Bong L, Puntambekar A, Lee JY (2004) Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc IEEE 92(1):154–173Google Scholar
  7. Ahn S-H, Kim Y-K (1997) Fabrication and experiment of planar micro ion drag pump. In: International conference on solid state sensors and actuators, 1997 TRANSDUCERS’97 Chicago, 1997. IEEE, Washington, DC, pp 373–376Google Scholar
  8. Anderson RC, Bogdan GJ, Bamiv Z, Dawes TD, Winkler J, Roy K (1997) Microfluidic bischemical analysis system. In: Transducers 1997 - international conference on solid state sensors and actuators, 16–19 Jun 1997. IEEE, Washington, DC, pp 477–480. doi: 10.1109/SENSOR.1997.613690 Google Scholar
  9. Andersson H, van der Wijngaart W, Enoksson P, Stemme G (2000) Micromachined flow-through filter-chamber for chemical reactions on beads. Sensors Actuators B Chem 67(1–2):203–208Google Scholar
  10. Andersson H, van der Wijngaart W, Griss P, Niklaus F, Stemme G (2001a) Hydrophobic valves of plasma deposited octafluorocyclobutane in DRIE channels. Sens Actuators B 75(1–2):136–141Google Scholar
  11. Andersson H, van der Wijngaart W, Nilsson P, Enoksson P, Stemme G (2001b) A valve-less diffuser micropump for microfluidic analytical systems. Sens Actuators B 72(3):259–265Google Scholar
  12. Andersson H, van der Wijngaart W, Stemme G (2001c) Micromachined filter-chamber array with passive valves for biochemical assays on beads. Electrophoresis 22(2):249–257Google Scholar
  13. Atten P, Seyed-Yagoobi J (2003) Electrohydrodynamically induced dielectric liquid flow through pure conduction in point/plane geometry. IEEE Trans Dielectr Electr Insul 10(1):27–36Google Scholar
  14. Bae B, Kee H, Kim S, Lee Y, Sim T, Kim Y, Park K (2003) In vitro experiment of the pressure regulating valve for a glaucoma implant. J Micromech Microeng 13(5):613Google Scholar
  15. Baldi A, Gu YD, Loftness PE, Siegel RA, Ziaie B (2003) A hydrogel-actuated environmentally sensitive microvalve for active flow control. J Microelectromech Syst 12(5):613–621Google Scholar
  16. Barbaro M, Bonfiglio A, Raffo L, Alessandrini A, Facci P, BarakBarak I (2006) A CMOS, fully integrated sensor for electronic detection of DNA hybridization. IEEE Electron Device Letters 27(7):595–597Google Scholar
  17. Bart SF, Tavrow LS, Mehregany M, Lang JH (1990) Microfabricated electrohydrodynamic pumps. Sensors Actuators A Phys 21(1):193–197Google Scholar
  18. Barth PW (1995) Silicon microvalves for gas flow control. In: The 8th international conference on solid-state sensors and actuators, Eurosensors IX, Transducers’95, 25–29 Jun 1995. IEEE, Washington, DC, pp 276–279. doi: 10.1109/SENSOR.1995.721799 Google Scholar
  19. Bau HH, Zhong J, Yi M (2001) A minute magneto hydro dynamic (MHD) mixer. Sens Actuators B 79(2):207–215Google Scholar
  20. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B-H (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(6778):588–590Google Scholar
  21. Belgrader P, Okuzumi M, Pourahmadi F, Borkholder DA, Northrup MA (2000) A microfluidic cartridge to prepare spores for PCR analysis. Biosens Bioelectron 14(10):849–852Google Scholar
  22. Benard WL, Kahn H, Heuer AH, Huff MA (1998) Thin-film shape-memory alloy actuated micropumps. J Microelectromech Syst 7(2):245–251Google Scholar
  23. Berger M, Welle A, Gottwald E, Rapp M, Länge K (2010) Biosensors coated with sulfated polysaccharides for the detection of hepatocyte growth factor/scatter factor in cell culture medium. Biosens Bioelectron 26(4):1706–1709Google Scholar
  24. Berglund RN, Liu BYH (1973) Generation of monodisperse aerosol standards. Environ Sci Technol 7(2):147–153Google Scholar
  25. Berthier E, Beebe DJ (2007) Flow rate analysis of a surface tension driven passive micropump. Lab Chip 7(11):1475–1478Google Scholar
  26. Bessoth F, deMello AJ, Manz A (1999) Microstructure for efficient continuous flow mixing. Anal Commun 36(6):213–215Google Scholar
  27. Biddiss E, Erickson D, Li D (2004) Heterogeneous surface charge enhanced micromixing for electrokinetic flows. Anal Chem 76(11):3208–3213Google Scholar
  28. Bien DCS, Mitchell SJN, Gamble HS (2003) Fabrication and characterization of a micromachined passive valve. J Micromech Microeng 13(5):557Google Scholar
  29. Bocong Y, Boxiong W, Werner Karl S (2010) A thermopneumatically actuated bistable microvalve. J Micromech Microeng 20(9):095024Google Scholar
  30. Böhm S, Olthuis W, Bergveld P (1999a) An integrated micromachined electrochemical pump and dosing system. Biomed Microdevices 1(2):121–130Google Scholar
  31. Böhm S, Olthuis W, Bergveld P (1999b) A plastic micropump constructed with conventional techniques and materials. Sensors Actuators A Phys 77(3):223–228Google Scholar
  32. Bökenkamp D, Desai A, Yang X, Tai Y-C, Marzluff EM, Mayo SL (1998) Microfabricated silicon mixers for submillisecond quench-flow analysis. Anal Chem 70(2):232–236Google Scholar
  33. Branebjerg J, Gravesen P, Krog JP, Nielsen CR (1996) Fast mixing by lamination. In: The ninth annual international workshop on micro electro mechanical systems, 1996, MEMS’96, Proceedings. An investigation of micro structures, sensors, actuators, machines and systems. IEEE, Washington, DC, pp 441–446Google Scholar
  34. Branebjerg J, Jensen OS, Laursen NG, Leistiko O, Soeberg H (1991) A micromachined flow sensor for measuring small liquid flows. In: Transducers 1991 - international conference on solid-state sensors and actuators, 24–27 June 1991. IEEE, Washington, DC, pp 41–44. doi: 10.1109/SENSOR.1991.148793 Google Scholar
  35. Brody JP, Yager P (1997) Diffusion-based extraction in a microfabricated device. Sensors Actuators A Phys 58(1):13–18Google Scholar
  36. Burns MA, Mastrangelo CH, Sammarco TS, Man FP, Webster JR, Johnsons B, Foerster B, Jones D, Fields Y, Kaiser AR (1996) Microfabricated structures for integrated DNA analysis. Proc Natl Acad Sci 93(11):5556–5561Google Scholar
  37. Burtis CA, Mailen JC, Johnson WF, Scott CD, Tiffany TO, Anderson NG (1972) Development of a miniature fast analyzer. Clin Chem 18(8):753–761Google Scholar
  38. Carlen ET, Mastrangelo CH (2002) Surface micromachined paraffin-actuated microvalve. J Microelectromech Syst 11(5):408–420Google Scholar
  39. Carrozza MC, Croce N, Magnani B, Dario P (1995) A piezoelectric-driven stereolithography-fabricated micropump. J Micromech Microeng 5(2):177Google Scholar
  40. Clausell-Tormos J, Lieber D, Baret J-C, El-Harrak A, Miller OJ, Frenz L, Blouwolff J, Humphry KJ, Köster S, Duan H (2008) Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol 15(5):427–437Google Scholar
  41. Colgate E, Matsumoto H (1990) An investigation of electrowetting‐based microactuation. J Vac Sci Technol A 8(4):3625–3633Google Scholar
  42. Crevillén AG, Hervás M, López MA, González MC, Escarpa A (2007) Real sample analysis on microfluidic devices. Talanta 74(3):342–357Google Scholar
  43. Curcio M, Roeraade J (2002) Continuous segmented-flow polymerase chain reaction for high-throughput miniaturized DNA amplification. Anal Chem 75(1):1–7Google Scholar
  44. Chakraborty I, Tang WC, Bame DP, Tang TK (2000) MEMS micro-valve for space applications. Sensors Actuators A Phys 83(1–3):188–193Google Scholar
  45. Chen C-H, Santiago JG (2002) A planar electroosmotic micropump. J Microelectromech Syst 11(6):672–683Google Scholar
  46. Chen IJ, Eckstein EC, Lindner E (2009) Computation of transient flow rates in passive pumping micro-fluidic systems. Lab Chip 9(1):107–114Google Scholar
  47. Chen JZ, Darhuber AA, Troian SM, Wagner S (2004) Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation. Lab Chip 4(5):473–480Google Scholar
  48. Chen ZY, Wang J, Qian SZ, Bau HH (2005) Thermally-actuated, phase change flow control for microfluidic systems. Lab Chip 5(11):1277–1285Google Scholar
  49. Cheng C-M, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, Mirica KA, Whitesides GM (2010) Paper-based ELISA. Angew Chem Int Ed 49(28):4771–4774Google Scholar
  50. Cheung K, Gawad S, Renaud P (2005) Impedance spectroscopy flow cytometry: on‐chip label‐free cell differentiation. Cytometry A 65(2):124–132Google Scholar
  51. Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12(12):2118–2134Google Scholar
  52. Cho HJ, Oh KW, Ahn CH, Boolchand P, Tae-Chul N (2001) Stress analysis of silicon membranes with electroplated permalloy films using Raman scattering. IEEE Trans Magn 37(4):2749–2751Google Scholar
  53. Cho ST, Wise KD (1993) A high-performance microflowmeter with built-in self test. Sensors Actuators A Phys 36(1):47–56Google Scholar
  54. Choi J-W, Oh K, Han A, Wijayawardhana CA, Lannes C, Bhansali S, Schlueter K, Heineman W, Halsall HB, Nevin J, Helmicki A, Henderson HT, Ahn C (2001) Development and characterization of microfluidic devices and systems for magnetic bead-based biochemical detection. Biomed Microdevices 3(3):191–200Google Scholar
  55. Choi K, Ng AH, Fobel R, Wheeler AR (2012) Digital microfluidics. Annu Rev Anal Chem 5:413–440Google Scholar
  56. Chou H-P, Unger M, Quake S (2001) A microfabricated rotary pump. Biomed Microdevices 3(4):323–330Google Scholar
  57. Chow AW (2002) Lab-on-a-chip: opportunities for chemical engineering. AIChE J 48(8):1590–1595Google Scholar
  58. Chung S, Kim J, Wang K, Han D-C, Chang J-K (2003) Development of MEMS-based cerebrospinal fluid shunt system. Biomed Microdevices 5(4):311–321Google Scholar
  59. Darabi J, Rada M, Ohadi M, Lawler J (2002) Design, fabrication, and testing of an electrohydrodynamic ion-drag micropump. J Microelectromech Syst 11(6):684–690Google Scholar
  60. Dario P, Croce N, Carrozza MC, Varallo G (1996) A fluid handling system for a chemical microanalyzer. J Micromech Microeng 6(1):95Google Scholar
  61. Dasgupta PK, Liu S (1994) Auxiliary electroosmotic pumping in capillary electrophoresis. Anal Chem 66(19):3060–3065Google Scholar
  62. Davidsson R, Genin F, Bengtsson M, Laurell T, Emnéus J (2004) Microfluidic biosensing systems Part I. Development and optimisation of enzymatic chemiluminescent μ-biosensors based on silicon microchips. Lab Chip 4(5):481–487Google Scholar
  63. de Jong J, Lammertink RGH, Wessling M (2006) Membranes and microfluidics: a review. Lab Chip 6(9):1125–1139Google Scholar
  64. Deféver T, Druet M, Rochelet-Dequaire M, Joannes M, Grossiord C, Limoges B, Marchal D (2009) Real-time electrochemical monitoring of the polymerase chain reaction by mediated redox catalysis. J Am Chem Soc 131(32):11433–11441Google Scholar
  65. Delapierre G (1989) Micro-machining: a survey of the most commonly used processes. Sensors Actuators 17(1–2):123–138Google Scholar
  66. Dertinger SK, Chiu DT, Jeon NL, Whitesides GM (2001) Generation of gradients having complex shapes using microfluidic networks. Anal Chem 73(6):1240–1246Google Scholar
  67. Deshmukh AA, Liepmann D, Pisano AP (2000) Continuous micromixer with pulsatile micropumps. In: Technical digest of the IEEE solid state sensor and actuator workshop (Hilton Head Island, SC). IEEE, Washington, DCGoogle Scholar
  68. Dongeun H, Wei G, Yoko K, James BG, Shuichi T (2005) Microfluidics for flow cytometric analysis of cells and particles. Physiol Meas 26(3):R73Google Scholar
  69. Döpper J, Clemens M, Ehrfeld W, Jung S, Kaemper K, Lehr H (1997) Micro gear pumps for dosing of viscous fluids. J Micromech Microeng 7(3):230Google Scholar
  70. Du L, Zhe J (2011) A high throughput inductive pulse sensor for online oil debris monitoring. Tribol Int 44(2):175–179Google Scholar
  71. Duffy DC, Gillis HL, Lin J, Sheppard NF, Kellogg GJ (1999) Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays. Anal Chem 71(20):4669–4678Google Scholar
  72. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974–4984Google Scholar
  73. Easley CJ, Karlinsey JM, Bienvenue JM, Legendre LA, Roper MG, Feldman SH, Hughes MA, Hewlett EL, Merkel TJ, Ferrance JP, Landers JP (2006) A fully integrated microfluidic genetic analysis system with sample-in–answer-out capability. Proc Natl Acad Sci 103(51):19272–19277Google Scholar
  74. El Moctar AO, Aubry N, Batton J (2003) Electro-hydrodynamic micro-fluidic mixer. Lab Chip 3(4):273–280Google Scholar
  75. Erickson KA, Wilding P (1993) Evaluation of a novel point-of-care system, the i-STAT portable clinical analyzer. Clin Chem 39(2):283–287Google Scholar
  76. Esashi M, Shoji S, Nakano A (1989) Normally closed microvalve and mircopump fabricated on a silicon wafer. Sensors Actuators 20(1–2):163–169Google Scholar
  77. Fahrenberg J, Bier W, Maas D, Menz W, Ruprecht R, Schomburg WK (1995) A microvalve system fabricated by thermoplastic molding. J Micromech Microeng 5(2):169Google Scholar
  78. Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3(3):245–281Google Scholar
  79. Feigl F (1935) Qualitative Analyse mit hilfe von Tuepfelreaktionen : theoretische Grundlagen, praktische Ausfuehrung und Anwendung. Akademische Verlagsgesellschaft, LeipzigGoogle Scholar
  80. Feng G-H, Chou Y-C (2011) Fabrication and characterization of thermally driven fast turn-on microvalve with adjustable backpressure design. Microelectron Eng 88(2):187–194Google Scholar
  81. Fletcher PDI, Haswell SJ, Pombo-Villar E, Warrington BH, Watts P, Wong SYF, Zhang X (2002) Micro reactors: principles and applications in organic synthesis. Tetrahedron 58(24):4735–4757Google Scholar
  82. Folta JA, Raley NF, Hee EW (1992) Design, fabrication and testing of a miniature peristaltic membrane pump. In: Solid-state sensor and actuator workshop, 1992 5th technical digest, 22–25 June 1992. IEEE, Washington, DC, pp 186–189. doi: 10.1109/solsen.1992.228296 Google Scholar
  83. Fréchette LG, Jacobson SA, Breuer KS, Ehrich FF, Ghodssi R, Khanna R, Wong CW, Zhang X, Schmidt MA, Epstein AH (2000) Demonstration of a microfabricated high-speed turbine supported on gas bearings. DTIC documentGoogle Scholar
  84. Fredrickson CK, Fan ZH (2004) Macro-to-micro interfaces for microfluidic devices. Lab Chip 4(6):526–533Google Scholar
  85. Fu C, Rummler Z, Schomburg W (2003) Magnetically driven micro ball valves fabricated by multilayer adhesive film bonding. J Micromech Microeng 13(4):S96Google Scholar
  86. Fu LM, Yang RJ, Lin CH, Chien YS (2005) A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency. Electrophoresis 26(9):1814–1824Google Scholar
  87. Fuhr G (1997) From micro field cages for living cells to Brownian pumps for submicron particles. In: Proceedings of the 1997 international symposium on micromechatronics and human science, 1997. IEEE, Washington, DC, pp 1–4Google Scholar
  88. Fuhr G, Hagedorn R, Muller T, Benecke W, Wagner B (1992) Microfabricated electrohydrodynamic (EHD) pumps for liquids of higher conductivity. J Microelectromech Syst 1(3):141–146Google Scholar
  89. Fuhr G, Schnelle T, Wagner B (1994) Travelling wave-driven microfabricated electrohydrodynamic pumps for liquids. J Micromech Microeng 4(4):217Google Scholar
  90. Fujii T, Sando Y, Higashino K, Fujii Y (2003) A plug and play microfluidic device. Lab Chip 3(3):193–197Google Scholar
  91. Funfak A, Brösing A, Brand M, Köhler JM (2007) Micro fluid segment technique for screening and development studies on Danio rerio embryos. Lab Chip 7(9):1132–1138Google Scholar
  92. Gass V, van der Schoot BH, Jeanneret S, de Rooij NF (1994) Integrated flow-regulated silicon micropump. Sensors Actuators A Phys 43(1–3):335–338Google Scholar
  93. Geng X, Yuan H, Oguz HN, Prosperetti A (2001) Bubble-based micropump for electrically conducting liquids. J Micromech Microeng 11(3):270Google Scholar
  94. Gerlach T (1998) Microdiffusers as dynamic passive valves for micropump applications. Sensors Actuators A Phys 69(2):181–191MathSciNetGoogle Scholar
  95. Gerlach T, Wurmus H (1995) Working principle and performance of the dynamic micropump. Sensors Actuators A Phys 50(1–2):135–140Google Scholar
  96. Ghindilis AL, Smith MW, Schwarzkopf KR, Roth KM, Peyvan K, Munro SB, Lodes MJ, Stöver AG, Bernards K, Dill K, McShea A (2007) CombiMatrix oligonucleotide arrays: genotyping and gene expression assays employing electrochemical detection. Biosens Bioelectron 22(9–10):1853–1860Google Scholar
  97. Glasgow I, Aubry N (2003) Enhancement of microfluidic mixing using time pulsing. Lab Chip 3(2):114–120Google Scholar
  98. Go JS, Shoji S (2004) A disposable, dead volume-free and leak-free in-plane PDMS microvalve. Sensors Actuators A Phys 114(2–3):438–444Google Scholar
  99. Gobby D, Angeli P, Gavriilidis A (2001) Mixing characteristics of T-type microfluidic mixers. J Micromech Microeng 11(2):126Google Scholar
  100. Goetz H, Kuschel M, Wulff T, Sauber C, Miller C, Fisher S, Woodward C (2004) Comparison of selected analytical techniques for protein sizing, quantitation and molecular weight determination. J Biochem Biophys Methods 60(3):281–293Google Scholar
  101. Goll C, Bacher W, Büstgens B, Maas D, Ruprecht R, Schomburg WK (1997) An electrostatically actuated polymer microvalve equipped with a movable membrane electrode. J Micromech Microeng 7(3):224Google Scholar
  102. Gorkin R, Park J, Siegrist J, Amasia M, Lee BS, Park J-M, Kim J, Kim H, Madou M, Cho Y-K (2010) Centrifugal microfluidics for biomedical applications. Lab Chip 10(14):1758–1773Google Scholar
  103. Gravesen P, Branebjerg J, Jensen OS (1993) Microfluidics-a review. J Micromech Microeng 3(4):168Google Scholar
  104. Greenacre CB, Flatland B, Souza MJ, Fry MM (2008) Comparison of avian biochemical test results with abaxis VetScan and Hitachi 911 analyzers. J Avian Med Surg 22(4):291–299Google Scholar
  105. Grover WH, Skelley AM, Liu CN, Lagally ET, Mathies RA (2003) Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sens Actuators B 89(3):315–323Google Scholar
  106. Gruhl FJ, Länge K (2014) Surface acoustic wave (SAW) biosensor for rapid and label-free detection of penicillin G in milk. Food Anal Methods 7(2):430–437Google Scholar
  107. Gu W, Zhu X, Futai N, Cho BS, Takayama S (2004) Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proc Natl Acad Sci U S A 101(45):15861–15866Google Scholar
  108. Guan J-G, Miao Y-Q, Zhang Q-J (2004) Impedimetric biosensors. J Biosci Bioeng 97(4):219–226Google Scholar
  109. Gui L, Liu J (2004) Ice valve for a mini/micro flow channel. J Micromech Microeng 14(2):242–246Google Scholar
  110. Gui L, Yu BY, Ren CL, Huissoon JP (2011) Microfluidic phase change valve with a two-level cooling/heating system. Microfluid Nanofluid 10(2):435–445Google Scholar
  111. Guttenberg Z, Müller H, Habermüller H, Geisbauer A, Pipper J, Felbel J, Kielpinski M, Scriba J, Wixforth A (2005) Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip 5(3):308–317Google Scholar
  112. Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7(9):1094–1110Google Scholar
  113. Handique K, Burke D, Mastrangelo C, Burns M (2001) On-chip thermopneumatic pressure for discrete drop pumping. Anal Chem 73(8):1831–1838Google Scholar
  114. Hannig C, Dirschka M, Länge K, Neumaier S, Rapp BE (2010) Synthesis and application of photo curable perfluoropolyethers as new material for microfluidics. Procedia Engineering 5:866–869Google Scholar
  115. Hao R, Wang D, Zhang X, Zuo G, Wei H, Yang R, Zhang Z, Cheng Z, Guo Y, Cui Z (2009) Rapid detection of Bacillus anthracis using monoclonal antibody functionalized QCM sensor. Biosens Bioelectron 24(5):1330–1335Google Scholar
  116. Hartshorne H, Backhouse CJ, Lee WE (2004) Ferrofluid-based microchip pump and valve. Sens Actuators B 99(2–3):592–600Google Scholar
  117. Hasegawa T, Nakashima K, Omatsu F, Ikuta K (2008) Multi-directional micro-switching valve chip with rotary mechanism. Sensors Actuators A Phys 143(2):390–398Google Scholar
  118. Hatch A, Kamholz AE, Holman G, Yager P, Bohringer KF (2001) A ferrofluidic magnetic micropump. J Microelectromech Syst 10(2):215–221Google Scholar
  119. He B, Burke BJ, Zhang X, Zhang R, Regnier FE (2001) A picoliter-volume mixer for microfluidic analytical systems. Anal Chem 73(9):1942–1947Google Scholar
  120. Heckele M, Schomburg WK (2004) Review on micro molding of thermoplastic polymers. J Micromech Microeng 14(3):R1–R14Google Scholar
  121. Hessel V, Hardt S, Löwe H, Schönfeld F (2003) Laminar mixing in different interdigital micromixers: I. Experimental characterization. AIChE J 49(3):566–577Google Scholar
  122. Hinsmann P, Frank J, Svasek P, Harasek M, Lendl B (2001) Design, simulation and application of a new micromixing device for time resolved infrared spectroscopy of chemical reactions in solution. Lab Chip 1(1):16–21Google Scholar
  123. Hong C-C, Chang P-H, Lin C-C, Hong C-L (2010a) A disposable microfluidic biochip with on-chip molecularly imprinted biosensors for optical detection of anesthetic propofol. Biosens Bioelectron 25(9):2058–2064Google Scholar
  124. Hong C-C, Choi J-W, Ahn C (2001) A novel in-plane passive micromixer using Coanda effect. In: Ramsey JM, Berg A (eds) Micro total analysis systems. Springer, Dordrecht, The Netherlands, pp 31–33. doi: 10.1007/978-94-010-1015-3_11 Google Scholar
  125. Hong C-C, Choi J-W, Ahn CH (2004) A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab Chip 4(2):109–113Google Scholar
  126. Hong J, Choi JS, Han G, Kang JK, Kim C-M, Kim TS, Yoon DS (2006) A Mach-Zehnder interferometer based on silicon oxides for biosensor applications. Anal Chim Acta 573–574:97–103Google Scholar
  127. Hong T-F, Ju W-J, Wu M-C, Tai C-H, Tsai C-H, Fu L-M (2010b) Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser. Microfluid Nanofluid 9(6):1125–1133Google Scholar
  128. Horade M, Mizuta Y, Kaji N, Higashiyama T, Arata H (2012) Plant-on-a-chip microfluidic-system for quantitative analysis of pollen tube guidance by signaling molecule: towards cell-to-cell communication study. In: Proc microTAS, 2012, pp 1027–1029Google Scholar
  129. Hua SZ, Sachs F, Yang DX, Chopra HD (2002) Microfluidic actuation using electrochemically generated bubbles. Anal Chem 74(24):6392–6396Google Scholar
  130. Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990Google Scholar
  131. Huang M-Z, Yang R-J, Tai C-H, Tsai C-H, Fu L-M (2006) Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel. Biomed Microdevices 8(4):309–315Google Scholar
  132. Huang S-B, Wu M-H, Cui Z, Cui Z, Lee G-B (2008) A membrane-based serpentine-shape pneumatic micropump with pumping performance modulated by fluidic resistance. J Micromech Microeng 18(4):045008Google Scholar
  133. Huang X, Gordon MJ, Zare RN (1988) Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis. Anal Chem 60(17):1837–1838Google Scholar
  134. Huh YS, Choi JH, Huh KA, Park TJ, Hong YK, Kim do H, Hong WH, Lee SY (2007) Microfluidic cell disruption system employing a magnetically actuated diaphragm. Electrophoresis 28(24):4748–4757Google Scholar
  135. Jang J, Lee SS (2000) Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sensors Actuators A Phys 80(1):84–89Google Scholar
  136. Jen C-P, Lin Y-C (2002) Design and simulation of bi-directional microfluid driving systems. J Micromech Microeng 12(2):115Google Scholar
  137. Jensen K (1998) Chemical kinetics: smaller, faster chemistry. Nature 393(6687):735–737Google Scholar
  138. Jensen KF (2006) Silicon-based microchemical systems: characteristics and applications. MRS Bull 31(02):101–107Google Scholar
  139. Jeon N, Chiu D, Wargo C, Wu H, Choi I, Anderson J, Whitesides G (2002) Microfluidics section: design and fabrication of integrated passive valves and pumps for flexible polymer 3-dimensional microfluidic systems. Biomed Microdevices 4(2):117–121Google Scholar
  140. Jeong OC, Konishi S (2008) Fabrication of a peristaltic micro pump with novel cascaded actuators. J Micromech Microeng 18(2):025022Google Scholar
  141. Jeong OC, Yang SS (2000) Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm. Sensors Actuators A Phys 83(1–3):249–255Google Scholar
  142. Jeong S-i, Seyed-Yagoobi J (2002) Experimental study of electrohydrodynamic pumping through conduction phenomenon. J Electrost 56(2):123–133Google Scholar
  143. Jerman H (1994) Electrically activated normally closed diaphragm valves. J Micromech Microeng 4(4):210Google Scholar
  144. Jiang F, Drese K, Hardt S, Küpper M, Schönfeld F (2004) Helical flows and chaotic mixing in curved micro channels. AIChE J 50(9):2297–2305Google Scholar
  145. Johnson RD, Badr IHA, Barrett G, Lai S, Lu Y, Madou MJ, Bachas LG (2001) Development of a fully integrated analysis system for ions based on ion-selective optodes and centrifugal microfluidics. Anal Chem 73(16):3940–3946Google Scholar
  146. Johnston I, Tracey M, Davis J, Tan C (2005) Microfluidic solid phase suspension transport with an elastomer-based, single piezo-actuator, micro throttle pump. Lab Chip 5(3):318–325Google Scholar
  147. Joo B-S, Huh J-S, Lee D-D (2007) Fabrication of polymer SAW sensor array to classify chemical warfare agents. Sens Actuators B 121(1):47–53Google Scholar
  148. Jorgenson JW, Lukacs KD (1981) Free-zone electrophoresis in glass capillaries. Clin Chem 27(9):1551–1553Google Scholar
  149. Ju W-J, Fu L-M, Yang R-J, Lee C-L (2012) Distillation and detection of SO2 using a microfluidic chip. Lab Chip 12(3):622–626Google Scholar
  150. Judy JW, Tamagawa T, Polla DL (1991) Surface-machined micromechanical membrane pump. In: Micro electro mechanical systems, 1991, MEMS’91, proceedings An investigation of micro structures, sensors, actuators, machines and robots, 30 Jan–2 Feb 1991. IEEE, Washington, DC, pp 182–186. doi: 10.1109/memsys.1991.114792 Google Scholar
  151. Jun TK (1998) Valveless pumping using traversing vapor bubbles in microchannels. J Appl Phys 83(11):5658–5664Google Scholar
  152. Juncker D, Schmid H, Drechsler U, Wolf H, Wolf M, Michel B, de Rooij N, Delamarche E (2002) Autonomous microfluidic capillary system. Anal Chem 74(24):6139–6144Google Scholar
  153. Kahn H, Huff MA, Heuer AH (1998) The TiNi shape-memory alloy and its applications for MEMS. J Micromech Microeng 8(3):213Google Scholar
  154. Kang TG, Kwon TH (2004) Colored particle tracking method for mixing analysis of chaotic micromixers. J Micromech Microeng 14(7):891Google Scholar
  155. Kataoka DE, Troian SM (1999) Patterning liquid flow on the microscopic scale. Nature 402(6763):794–797Google Scholar
  156. Kawakatsu T, Kikuchi Y, Nakajima M (1997) Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J Amer Oil Chem Soc 74(3):317–321Google Scholar
  157. Kawakatsu T, Trägårdh G, Kikuchi Y, Nakajima M, Komori H, Yonemoto T (2000) Effect of microchannel structure on droplet size during crossflow microchannel emulsification. J Surfact Deterg 3(3):295–302Google Scholar
  158. Kazuo H, Ryutaro M (2000) A pneumatically-actuated three-way microvalve fabricated with polydimethylsiloxane using the membrane transfer technique. J Micromech Microeng 10(3):415Google Scholar
  159. Khan MF, Schmid S, Larsen PE, Davis ZJ, Yan W, Stenby EH, Boisen A (2013) Online measurement of mass density and viscosity of pL fluid samples with suspended microchannel resonator. Sens Actuators B 185:456–461Google Scholar
  160. Khoo M, Liu C (2001) Micro magnetic silicone elastomer membrane actuator. Sensors Actuators A Phys 89(3):259–266Google Scholar
  161. Kim DS, Lee SW, Kwon TH, Lee SS (2004) A barrier embedded chaotic micromixer. J Micromech Microeng 14(6):798Google Scholar
  162. Kim J, Baek J, Lee K, Park Y, Sun K, Lee T, Lee S (2006) Photopolymerized check valve and its integration into a pneumatic pumping system for biocompatible sample delivery. Lab Chip 6(8):1091–1094Google Scholar
  163. Kim J, Byun D, Mauk MG, Bau HH (2009) A disposable, self-contained PCR chip. Lab Chip 9(4):606–612Google Scholar
  164. Kim P, Kwon KW, Park MC, Lee SH, Kim SM, Suh KY (2008) Soft lithography for microfluidics: a review. Biochip Journal 2:1–11Google Scholar
  165. Kirby BJ, Shepodd TJ, Hasselbrink EF Jr (2002) Voltage-addressable on/off microvalves for high-pressure microchip separations. J Chromatogr A 979(1–2):147–154Google Scholar
  166. Klintberg L, Karlsson M, Stenmark L, Schweitz J-Å, Thornell G (2002) A large stroke, high force paraffin phase transition actuator. Sensors Actuators A Phys 96(2–3):189–195Google Scholar
  167. Knight JB, Vishwanath A, Brody JP, Austin RH (1998) Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett 80(17):3863Google Scholar
  168. Koch M, Chatelain D, Evans AGR, Brunnschweiler A (1998) Two simple micromixers based on silicon. J Micromech Microeng 8(2):123Google Scholar
  169. Koch M, Evans AGR, Brunnschweiler A (1997) Characterization of micromachined cantilever valves. J Micromech Microeng 7(3):221Google Scholar
  170. Koch M, Witt H, Evans A, Brunnschweiler A (1999) Improved characterization technique for micromixers. J Micromech Microeng 9(2):156Google Scholar
  171. Kohl M, Dittmann D, Quandt E, Winzek B (2000) Thin film shape memory microvalves with adjustable operation temperature. Sensors Actuators A Phys 83(1–3):214–219Google Scholar
  172. Kohl M, Dittmann D, Quandt E, Winzek B, Miyazaki S, Allen DM (1999a) Shape memory microvalves based on thin films or rolled sheets. Mater Sci Eng A 273–275:784–788Google Scholar
  173. Kohl M, Skrobanek KD, Miyazaki S (1999b) Development of stress-optimised shape memory microvalves. Sensors Actuators A Phys 72(3):243–250Google Scholar
  174. Kohlrausch F (1897) Ueber Concentrations-Verschiebungen durch Elektrolyse im Innern von Lösungen und Lösungsgemischen. Ann Phys Chem 62:209–239zbMATHGoogle Scholar
  175. Kopf-Sill AR (2002) PROFILESuccesses and challenges of lab-on-a-chip. Lab Chip 2(3):42N–47NGoogle Scholar
  176. Kortmann H, Blank LM, Schmid A (2011) Single cell analytics: an overview. In: High resolution microbial single cell analytics. Springer, Dordrecht, The Netherlands, pp 99–122Google Scholar
  177. Kurosawa M, Watanabe T, Higuchi T (1995) Surface acoustic wave atomizer with pumping effect. In: Micro electro mechanical systems. IEEE, Washington, DCGoogle Scholar
  178. Kwang-Seok Y, Il-Joo C, Bu J-U, Chang-Jin K, Euisik Y (2002) A surface-tension driven micropump for low-voltage and low-power operations. J Microelectromech Syst 11(5):454–461Google Scholar
  179. Lagally E, Medintz I, Mathies R (2001) Single-molecule DNA amplification and analysis in an integrated microfluidic device. Anal Chem 73(3):565–570Google Scholar
  180. Lagally ET, Simpson PC, Mathies RA (2000) Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system. Sens Actuators B 63(3):138–146Google Scholar
  181. Länge K, Grimm S, Rapp M (2007) Chemical modification of parylene C coatings for SAW biosensors. Sens Actuators B 125(2):441–446Google Scholar
  182. Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391(5):1509–1519Google Scholar
  183. Lao AI, Lee TM, Hsing I, Ip NY (2000) Precise temperature control of microfluidic chamber for gas and liquid phase reactions. Sensors Actuators A Phys 84(1):11–17Google Scholar
  184. Laser DJ, Goodson KE, Santiago JG, Kenny TW (2002) High-frequency actuation with silicon electroosmotic micropumps. In: Proc 2002 solid-state sensor, actuator, and microsystems workshop (Hilton Head Island, SC). IEEE, Washington, DCGoogle Scholar
  185. Lee BS, Lee J-N, Park J-M, Lee J-G, Kim S, Cho Y-K, Ko C (2009) A fully automated immunoassay from whole blood on a disc. Lab Chip 9(11):1548–1555Google Scholar
  186. Lee J, Moon H, Fowler J, Schoellhammer T, Kim C-J (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sensors Actuators A Phys 95(2–3):259–268Google Scholar
  187. Lee S, Jeong O, Yang S (1998) The fabrication of a micro injector actuated by boiling and/or electrolysis. In: The eleventh annual international workshop on micro electro mechanical systems, 1998, MEMS 98. Proceedings. IEEE, Washington, DC, pp 51–56Google Scholar
  188. Lefèvre F, Chalifour A, Yu L, Chodavarapu V, Juneau P, Izquierdo R (2012) Algal fluorescence sensor integrated into a microfluidic chip for water pollutant detection. Lab Chip 12(4):787–793Google Scholar
  189. Legendre LA, Bienvenue JM, Roper MG, Ferrance JP, Landers JP (2006) A simple, valveless microfluidic sample preparation device for extraction and amplification of DNA from nanoliter-volume samples. Anal Chem 78(5):1444–1451Google Scholar
  190. Legiret F-E, Sieben VJ, Woodward EMS, Abi Kaed Bey SK, Mowlem MC, Connelly DP, Achterberg EP (2013) A high performance microfluidic analyser for phosphate measurements in marine waters using the vanadomolybdate method. Talanta 116:382–387Google Scholar
  191. Lemoff AV, Lee AP (2000) An AC magnetohydrodynamic micropump. Sens Actuators B 63(3):178–185Google Scholar
  192. Lemoff AV, Lee AP, Miles RR, McConaghy CF (1999) An AC magnetohydrodynamic micropump: towards a true integrated microfluidic system. In: 10th International conference on solid-state sensors and actuator, 1999. IEEE, Washington, DC, pp 1126–1129Google Scholar
  193. Lewis GG, Robbins JS, Phillips ST (2013) Point-of-care assay platform for quantifying active enzymes to femtomolar levels using measurements of time as the readout. Anal Chem 85(21):10432–10439Google Scholar
  194. Li B, Chen Q, Lee D-G, Woolman J, Carman GP (2005) Development of large flow rate, robust, passive micro check valves for compact piezoelectrically actuated pumps. Sensors Actuators A Phys 117(2):325–330Google Scholar
  195. Li H, Roberts D, Steyn J, Turner K, Carretero J, Yaglioglu O, Su Y, Saggere L, Hagood N, Spearing S (2000) A high frequency high flow rate piezoelectrically driven MEMS micropump. In: Proceedings IEEE solid state sensors and actuators workshop, Hilton Head. IEEE, Washington, DCGoogle Scholar
  196. Li X, Tian J, Garnier G, Shen W (2010) Fabrication of paper-based microfluidic sensors by printing. Colloids Surf B Biointerfaces 76(2):564–570Google Scholar
  197. Lichtenberg J, de Rooij NF, Verpoorte E (2002) Sample pretreatment on microfabricated devices. Talanta 56(2):233–266Google Scholar
  198. Lien K-Y, Lee W-C, Lei H-Y, Lee G-B (2007) Integrated reverse transcription polymerase chain reaction systems for virus detection. Biosens Bioelectron 22(8):1739–1748Google Scholar
  199. Lin C-F, Lee G-B, Wang C-H, Lee H-H, Liao W-Y, Chou T-C (2006) Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices. Biosens Bioelectron 21(8):1468–1475Google Scholar
  200. Lin C-H, Wang Y-N, Fu L-M (2012) Integrated microfluidic chip for rapid DNA digestion and time-resolved capillary electrophoresis analysis. Biomicrofluidics 6(1):012818Google Scholar
  201. Lin T-Y, Hu C-H, Chou T-C (2004) Determination of albumin concentration by MIP-QCM sensor. Biosens Bioelectron 20(1):75–81Google Scholar
  202. Liu B-F, Ozaki M, Hisamoto H, Luo Q, Utsumi Y, Hattori T, Terabe S (2004a) Microfluidic chip toward cellular ATP and ATP-conjugated metabolic analysis with bioluminescence detection. Anal Chem 77(2):573–578Google Scholar
  203. Liu L, Chen X, Niu X, Wen W, Sheng P (2006) Electrorheological fluid-actuated microfluidic pump. Appl Phys Lett 89(8):083505-083505–083503Google Scholar
  204. Liu RH, Bonanno J, Yang J, Lenigk R, Grodzinski P (2004b) Single-use, thermally actuated paraffin valves for microfluidic applications. Sens Actuators B 98(2–3):328–336Google Scholar
  205. Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, Aref H, Beebe DJ (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Syst 9(2):190–197Google Scholar
  206. Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P (2004c) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76(7):1824–1831Google Scholar
  207. Liu RH, Yu Q, Beebe DJ (2002) Fabrication and characterization of hydrogel-based microvalves. J Microelectromech Syst 11(1):45–53Google Scholar
  208. London A, Epstein A, Kerrebrock J (2001) High-pressure bipropellant microrocket engine. J Propuls Power 17(4):780–787Google Scholar
  209. Lu L-H, Ryu K, Liu C (2001) A novel microstirrer and arrays for microfluidic mixing. In: Ramsey JM, Berg A (eds) Micro total analysis systems 2001. Springer, Dordrecht, The Netherlands, pp 28–30. doi: 10.1007/978-94-010-1015-3_10 Google Scholar
  210. Lu L-H, Ryu KS, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Syst 11(5):462–469Google Scholar
  211. Lui C, Stelick S, Cady N, Batt C (2010) Low-power microfluidic electro-hydraulic pump (EHP). Lab Chip 10(1):74–79Google Scholar
  212. Luque A, Quero JM, Hibert C, Flückiger P, Gañán-Calvo AM (2005) Integrable silicon microfluidic valve with pneumatic actuation. Sensors Actuators A Phys 118(1):144–151Google Scholar
  213. Lloyd DK (1996) Capillary electrophoretic analyses of drugs in body fluids: sample pretreatment and methods for direct injection of biofluids. J Chromatogr A 735(1–2):29–42Google Scholar
  214. Madou MJ, Kellogg GJ (1998) LabCD: a centrifuge-based microfluidic platform for diagnostics. In: Proc. SPIE 3259, systems and technologies for clinical diagnostics and drug discovery, pp 80–93Google Scholar
  215. Marseille O, Habib N, Reul H, Rau G (1998) Implantable micropump system for augmented liver perfusion. Artif Organs 22(6):458–460Google Scholar
  216. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46(8):1318–1320Google Scholar
  217. Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci 105(50):19606–19611Google Scholar
  218. Mason TG, Bibette J (1997) Shear rupturing of droplets in complex fluids. Langmuir 13(17):4600–4613Google Scholar
  219. McKnight TE, Culbertson CT, Jacobson SC, Ramsey JM (2001) Electroosmotically induced hydraulic pumping with integrated electrodes on microfluidic devices. Anal Chem 73(16):4045–4049Google Scholar
  220. Meckes A, Behrens J, Kayser O, Benecke W, Becker T, Müller G (1999) Microfluidic system for the integration and cyclic operation of gas sensors. Sensors Actuators A Phys 76(1–3):478–483Google Scholar
  221. Mehta G, Mehta K, Sud D, Song J, Bersano-Begey T, Futai N, Heo YS, Mycek M-A, Linderman J, Takayama S (2007) Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture. Biomed Microdevices 9(2):123–134Google Scholar
  222. Melin J, Giménez G, Roxhed N, van der Wijngaart W, Stemme G (2004a) A fast passive and planar liquid sample micromixer. Lab Chip 4(3):214–219Google Scholar
  223. Melin J, Roxhed N, Gimenez G, Griss P, van der Wijngaart W, Stemme G (2004b) A liquid-triggered liquid microvalve for on-chip flow control. Sens Actuators B 100(3):463–468Google Scholar
  224. Mengeaud V, Josserand J, Girault HH (2002) Mixing processes in a zigzag microchannel: finite element simulations and optical study. Anal Chem 74(16):4279–4286Google Scholar
  225. Meyvantsson I, Warrick JW, Hayes S, Skoien A, Beebe DJ (2008) Automated cell culture in high density tubeless microfluidic device arrays. Lab Chip 8(5):717–724Google Scholar
  226. Mikkers FEP, Everaerts FM, Verheggen TPEM (1979) High-performance zone electrophoresis. J Chromatogr A 169:11–20Google Scholar
  227. Minas G, Martins JS, Ribeiro JC, Wolffenbuttel RF, Correia JH (2004) Biological microsystem for measuring uric acid in biological fluids. Sensors Actuators A Phys 110(1–3):33–38Google Scholar
  228. Mirica KA, Weis JG, Schnorr JM, Esser B, Swager TM (2012) Mechanical drawing of gas sensors on paper. Angew Chem Int Ed 51(43):10740–10745Google Scholar
  229. Miyake R, Tsuzuki K, Takagi T, Imai K (1997) A highly sensitive and small flow-type chemical analysis system with integrated absorptiometric micro-flowcell. In: Tenth annual international workshop on micro electro mechanical systems, 1997, MEMS’97, Proceedings. IEEE, Washington, DC, pp 102–107Google Scholar
  230. Mizoguchi H, Ando M, Mizuno T, Takagi T, Nakajima N (1992) Design and fabrication of light driven micropump. In: Micro electro mechanical systems, 1992, MEMS’92, Proceedings. An investigation of micro structures, sensors, actuators, machines and robot, 4–7 Feb 1992. IEEE, Washington, DC, pp 31–36. doi: 10.1109/memsys.1992.187686 Google Scholar
  231. Moroney R, White R, Howe R (1991) Ultrasonically induced microtransport. In: Micro electro mechanical systems, 1991, MEMS’91, Proceedings. An investigation of micro structures, sensors, actuators, machines and robots. IEEE, Washington, DC, pp 277–282Google Scholar
  232. Münchow G, Dadic D, Doffing F, Hardt S, Drese K-S (2005) Automated chip-based device for simple and fast nucleic acid amplification. Expert Rev Mol Diagn 5(4):613–620Google Scholar
  233. Munson MS, Yager P (2004) Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer. Anal Chim Acta 507(1):63–71Google Scholar
  234. Myers FB, Henrikson RH, Bone J, Lee LP (2013) A handheld point-of-care genomic diagnostic system. PLoS One 8(8):e70266Google Scholar
  235. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239Google Scholar
  236. Nakashima T, Shimizu M (1993) Preparation of monodispersed O/W emulsion by porous glass membrane. Kagaku Kogaku Ronbunshu 19:984Google Scholar
  237. Neagu CR, Gardeniers GE, Elwenspoek M, Kelly JJ (1996) An electrochemical microactuator: principle and first results. J Microelectromech Syst 5(1):2–9Google Scholar
  238. Neumann C, Voigt A, Pires L, Rapp BE (2013) Design and characterization of a platform for thermal actuation of up to 588 microfluidic valves. Microfluid Nanofluid 14(1–2):177–186Google Scholar
  239. Newman JD, Turner APF (2005) Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron 20(12):2435–2453Google Scholar
  240. Nguyen N-T, Huang X (2001) Miniature valveless pumps based on printed circuit board technique. Sensors Actuators A Phys 88(2):104–111Google Scholar
  241. Nguyen N-T, Meng AH, Black J, White RM (2000) Integrated flow sensor for in situ measurement and control of acoustic streaming in flexural plate wave micropumps. Sensors Actuators A Phys 79(2):115–121Google Scholar
  242. Nguyen N-T, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15(2):R1Google Scholar
  243. Nguyen TT, Goo NS, Nguyen VK, Yoo Y, Park S (2008) Design, fabrication, and experimental characterization of a flap valve IPMC micropump with a flexibly supported diaphragm. Sensors Actuators A Phys 141(2):640–648Google Scholar
  244. Niu X, Lee Y-K (2003) Efficient spatial-temporal chaotic mixing in microchannels. J Micromech Microeng 13(3):454Google Scholar
  245. Norbert S, Thomas F, Helmut W (1996) A modular microfluid system with an integrated micromixer. J Micromech Microeng 6(1):99Google Scholar
  246. Oddy M, Santiago J, Mikkelsen J (2001) Electrokinetic instability micromixing. Anal Chem 73(24):5822–5832Google Scholar
  247. Ogden S, Boden R, Hjort K (2010) A latchable valve for high-pressure microfluidics. J Microelectromech Syst 19(2):396–401Google Scholar
  248. Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16(5):R13–R39Google Scholar
  249. Oh KW, Park C, Namkoong K, Kim J, Ock K-S, Kim S, Kim Y-A, Cho Y-K, Ko C (2005) World-to-chip microfluidic interface with built-in valves for multichamber chip-based PCR assays. Lab Chip 5(8):845–850Google Scholar
  250. Ohori T, Shoji S, Miura K, Yotsumoto A (1998) Partly disposable three-way microvalve for a medical micro total analysis system (μTAS). Sensors Actuators A Phys 64(1):57–62Google Scholar
  251. Olsson A, Stemme G, Stemme E (1995) A valve-less planar fluid pump with two pump chambers. Sensors Actuators A Phys 47(1–3):549–556Google Scholar
  252. Olsson A, Stemme G, Stemme E (2000) Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps. Sensors Actuators A Phys 84(1–2):165–175Google Scholar
  253. Pal R, Yang M, Johnson BN, Burke DT, Burns MA (2004) Phase change microvalve for integrated devices. Anal Chem 76(13):3740–3748Google Scholar
  254. Pal R, Yang M, Lin R, Johnson B, Srivastava N, Razzacki S, Chomistek K, Heldsinger D, Haque R, Ugaz V (2005) An integrated microfluidic device for influenza and other genetic analyses. Lab Chip 5(10):1024–1032Google Scholar
  255. Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7(12):1644–1659Google Scholar
  256. Papageorgiou DT (1995) On the breakup of viscous liquid threads. Physics of Fluids (1994-present) 7(7):1529–1544zbMATHGoogle Scholar
  257. Park S-J, Kim JK, Park J, Chung S, Chung C, Chang JK (2004) Rapid three-dimensional passive rotation micromixer using the breakup process. J Micromech Microeng 14(1):6Google Scholar
  258. Peige S, Zeno R, Werner Karl S (2004) Polymer micro piezo valve with a small dead volume. J Micromech Microeng 14(2):305Google Scholar
  259. Peirs J, Reynaerts D, Van Brussel H (2000) Design of miniature parallel manipulators for integration in a self-propelling endoscope. Sensors Actuators A Phys 85(1–3):409–417Google Scholar
  260. Petersen NJ, Mogensen KB, Kutter JP (2002) Performance of an in-plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices. Electrophoresis 23(20):3528–3536Google Scholar
  261. Petralia S, Verardo R, Klaric E, Cavallaro S, Alessi E, Schneider C (2013) In-Check system: a highly integrated silicon Lab-on-Chip for sample preparation, PCR amplification and microarray detection of nucleic acids directly from biological samples. Sens Actuators B 187:99–105Google Scholar
  262. Pfleging W, Torge M, Bruns M, Trouillet V, Welle A, Wilson S (2009) Laser- and UV-assisted modification of polystyrene surfaces for control of protein adsorption and cell adhesion. Appl Surf Sci 255(10):5453–5457Google Scholar
  263. Pickup JC, Shaw GW, Claremont DJ (1989) In vivo molecular sensing in diabetes mellitus: an implantable glucose sensor with direct electron transfer. Diabetologia 32(3):213–217Google Scholar
  264. Pires L, Sachsenheimer K, Kleintschek T, Waldbaur A, Schwartz T, Rapp BE (2013) Online monitoring of biofilm growth and activity using a combined multi-channel impedimetric and amperometric sensor. Biosens Bioelectron 47:157–163Google Scholar
  265. Piruska A, Nikcevic I, Lee SH, Ahn C, Heineman WR, Limbach PA, Seliskar CJ (2005) The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 5(12):1348–1354Google Scholar
  266. Pollack M, Shenderov A, Fair R (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2):96–101Google Scholar
  267. Pu Q, Oyesanya O, Thompson B, Liu S, Alvarez JC (2006) On-chip micropatterning of plastic (Cylic Olefin Copolymer, COC) microfluidic channels for the fabrication of biomolecule microarrays using photografting methods. Langmuir 23(3):1577–1583Google Scholar
  268. Puckett LG, Dikici E, Lai S, Madou M, Bachas LG, Daunert S (2004) Investigation into the applicability of the centrifugal microfluidics platform for the development of protein–ligand binding assays incorporating enhanced green fluorescent protein as a fluorescent reporter. Anal Chem 76(24):7263–7268Google Scholar
  269. Ramsey R, Ramsey J (1997) Generating electrospray from microchip devices using electroosmotic pumping. Anal Chem 69(6):1174–1178Google Scholar
  270. Rapp BE, Carneiro L, Laenge K, Rapp M (2009) An indirect microfluidic flow injection analysis (FIA) system allowing diffusion free pumping of liquids by using tetradecane as intermediary liquid. Lab Chip 9(2):354–356Google Scholar
  271. Rapp BE, Gruhl FJ, Länge K (2010) Biosensors with label-free detection designed for diagnostic applications. Anal Bioanal Chem 398(6):2403–2412Google Scholar
  272. Rapp BE, Schickling B, Prokop J, Piotter V, Rapp M, Laenge K (2011) Design and integration of a generic disposable array-compatible sensor housing into an integrated disposable indirect microfluidic flow injection analysis system. Biomed Microdevices 13(5):909–922Google Scholar
  273. Rapp R, Schomburg WK, Maas D, Schulz J, Stark W (1994) LIGA micropump for gases and liquids. Sensors Actuators A Phys 40(1):57–61Google Scholar
  274. Rasmussen A, Zaghloul ME (1999) The design and fabrication of microfluidic flow sensors. In: Proceedings of the 1999 I.E. international symposium on circuits and systems, 1999, ISCAS’99. IEEE, Washington, DC, pp 136–139Google Scholar
  275. Recknor JB, Sakaguchi DS, Mallapragada SK (2006) Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates. Biomaterials 27(22):4098–4108Google Scholar
  276. Rehm JE, Shepodd TJ, Hasselbrink EF (2001) Mobile flow control elements for high-pressure micro-analytical systems fabricated using in-situ polymerization. In: Ramsey JM, Berg A (eds) Micro total analysis systems. Springer, Dordrecht, The Netherlands, pp 227–229. doi: 10.1007/978-94-010-1015-3_98 Google Scholar
  277. Rich CA, Wise KD (2003) A high-flow thermopneumatic microvalve with improved efficiency and integrated state sensing. J Microelectromech Syst 12(2):201–208Google Scholar
  278. Richter A, Kuckling D, Howitz S, Gehring T, Arndt KF (2003) Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications. J Microelectromech Syst 12(5):748–753Google Scholar
  279. Richter A, Plettner A, Hofmann K, Sandmaier H (1991) A micromachined electrohydrodynamic (EHD) pump. Sensors Actuators A Phys 29(2):159–168Google Scholar
  280. Richter A, Sandmaier H (1990) An electrohydrodynamic micropump. In: Micro electro mechanical systems, 1990 Proceedings. An investigation of micro structures, sensors, actuators, machines and robots. IEEE, Washington, DC, pp 99–104Google Scholar
  281. Rife J, Bell M, Horwitz J, Kabler M, Auyeung R, Kim W (2000) Miniature valveless ultrasonic pumps and mixers. Sensors Actuators A Phys 86(1):135–140Google Scholar
  282. Roberts DC, Hanqing L, Steyn JL, Yaglioglu O, Spearing SM, Schmidt MA, Hagood NW (2003) A piezoelectric microvalve for compact high-frequency, high-differential pressure hydraulic micropumping systems. J Microelectromech Syst 12(1):81–92Google Scholar
  283. Rogge T, Rummler Z, Schomburg WK (2004) Polymer micro valve with a hydraulic piezo-drive fabricated by the AMANDA process. Sensors Actuators A Phys 110(1–3):206–212Google Scholar
  284. Ross D, Gaitan M, Locascio L (2001) Temperature measurement and control in microfluidic systems. In: Ramsey JM, Berg A (eds) Micro total analysis systems. Springer, Dordrecht, The Netherlands, pp 239–241. doi: 10.1007/978-94-010-1015-3_102 Google Scholar
  285. Ryu S, Yoo I, Song S, Yoon B, Kim J-M (2009) A thermoresponsive fluorogenic conjugated polymer for a temperature sensor in microfluidic devices. J Am Chem Soc 131(11):3800–3801Google Scholar
  286. Saarela V, Franssila S, Tuomikoski S, Marttila S, Ostman P, Sikanen T, Kotiaho T, Kostiainen R (2006) Re-usable multi-inlet PDMS fluidic connector. Sensors Actuators B Chem 114(1):552–557Google Scholar
  287. Sabourin D, Snakenborg D, Dufva M (2009) Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections. J Micromech Microeng 19(3):035021Google Scholar
  288. Sadler DJ, Oh KW, Ahn CH, Bhansali S, Henderson HT (1999) A new magnetically actuated microvalve for liquid and gas control applications. In: Proceedings of Transducers, 1999. pp 1812–1815Google Scholar
  289. Sammarco TS, Burns MA (1999) Thermocapillary pumping of discrete drops in microfabricated analysis devices. AIChE J 45(2):350–366Google Scholar
  290. Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25(4):316–319Google Scholar
  291. Satyanarayana S, McCormick DT, Majumdar A (2006) Parylene micro membrane capacitive sensor array for chemical and biological sensing. Sens Actuators B 115(1):494–502Google Scholar
  292. Sauer-Budge AF, Mirer P, Chatterjee A, Klapperich CM, Chargin D, Sharon A (2009) Low cost and manufacturable complete microTAS for detecting bacteria. Lab Chip 9(19):2803–2810Google Scholar
  293. Scott A, Au AK, Vinckenbosch E, Folch A (2013) A microfluidic D-subminiature connector. Lab Chip 13:2036–2039Google Scholar
  294. Schabmueller CGJ, Koch M, Mokhtari ME, Evans AGR, Brunnschweiler A, Sehr H (2002) Self-aligning gas/liquid micropump. J Micromech Microeng 12(4):420Google Scholar
  295. Schönfeld F, Hessel V, Hofmann C (2004) An optimised split-and-recombine micro-mixer with uniform ‘chaotic’ mixing. Lab Chip 4(1):65–69Google Scholar
  296. Schumacher S, Nestler J, Otto T, Wegener M, Ehrentreich-Förster E, Michel D, Wunderlich K, Palzer S, Sohn K, Weber A (2012) Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. Lab Chip 12(3):464–473Google Scholar
  297. Sen M, Wajerski D, Gad-el-Hak M (1996) A novel pump for MEMS applications. J Fluid Eng Trans ASME 118(3):624–627Google Scholar
  298. Shikida M, Sato K, Tanaka S, Kawamura Y, Fujisaki Y (1994) Electrostatically driven gas valve with high conductance. J Microelectromech Syst 3(2):76–80Google Scholar
  299. Sim WY, Yoon HJ, Jeong OC, Yang SS (2003) A phase-change type micropump with aluminum flap valves. J Micromech Microeng 13(2):286Google Scholar
  300. Sin A, Reardon CF, Shuler ML (2004) A self-priming microfluidic diaphragm pump capable of recirculation fabricated by combining soft lithography and traditional machining. Biotechnol Bioeng 85(3):359–363Google Scholar
  301. Singh MK, Anderson PD, Meijer HE (2009) Understanding and optimizing the SMX static mixer. Macromol Rapid Commun 30(4–5):362–376Google Scholar
  302. Smithies O (1955) Zone electrophoresis in starch gels - group variations in the serum proteins of normal human adults. Biochem J 61(4):629–641Google Scholar
  303. Smits JG (1985) Piezoelectric micropump for peristaltic fluid displacements. NL 8302860Google Scholar
  304. Smits JG (1990) Piezoelectric micropump with three valves working peristaltically. Sensors Actuators A Phys 21(1–3):203–206Google Scholar
  305. Song H, Bringer MR, Tice JD, Gerdts CJ, Ismagilov RF (2003) Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels. Appl Phys Lett 83(22):4664–4666Google Scholar
  306. Spencer WJ, Corbett WT, Dominguez LR, Shafer BD (1978) An electronically controlled piezoelectric insulin pump and valves. IEEE Trans Sonics Ultrasonics 25(3):153–156Google Scholar
  307. Star A, Tu E, Niemann J, Gabriel J-CP, Joiner CS, Valcke C (2006) Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc Natl Acad Sci U S A 103(4):921–926Google Scholar
  308. Strohmeier O, Emperle A, Roth G, Mark D, Zengerle R, von Stetten F (2013) Centrifugal gas-phase transition magnetophoresis (GTM) - a generic method for automation of magnetic bead based assays on the centrifugal microfluidic platform and application to DNA purification. Lab Chip 13(1):146–155Google Scholar
  309. Stroock AD, Dertinger SK, Ajdari A, Mezić I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295(5555):647–651Google Scholar
  310. Studer V, Jameson R, Pellereau E, Pépin A, Chen Y (2004) A microfluidic mammalian cell sorter based on fluorescence detection. Microelectron Eng 73–74:852–857Google Scholar
  311. Su Y-C, Lin L (2004) A water-powered micro drug delivery system. J Microelectromech Syst 13(1):75–82Google Scholar
  312. Sundararajan N, Kim D, Berlin AA (2005) Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography. Lab Chip 5(3):350–354Google Scholar
  313. Suzuki H, Ho C-M (2002) A magnetic force driven chaotic micro-mixer. In: The fifteenth IEEE international conference on micro electro mechanical systems, 2002. IEEE, Washington, DC, pp 40–43Google Scholar
  314. Suzuki H, Yoneyama R (2003) Integrated microfluidic system with electrochemically actuated on-chip pumps and valves. Sens Actuators B 96(1–2):38–45Google Scholar
  315. Suzuki K, Fujiki I, Hagura Y (1998) Preparation of corn oil/water and water/corn oil emulsions using PTFE membranes. Food Sci Tech Int Tokyo 4(2):164–167Google Scholar
  316. Takagi H, Maeda R, Ozaki K, Parameswaran M, Mehta M (1994) Phase transformation type micro pump. In: Proceedings, 5th international symposium on micro machine and human science, 1994. IEEE, Washington, DC, p 199Google Scholar
  317. Takao H, Miyamura K, Ebi H, Ashiki M, Sawada K, Ishida M (2005) A MEMS microvalve with PDMS diaphragm and two-chamber configuration of thermo-pneumatic actuator for integrated blood test system on silicon. Sensors Actuators A Phys 119(2):468–475Google Scholar
  318. Tan F, Leung PHM, Z-b L, Zhang Y, Xiao L, Ye W, Zhang X, Yi L, Yang M (2011) A PDMS microfluidic impedance immunosensor for E. coli O157:H7 and Staphylococcus aureus detection via antibody-immobilized nanoporous membrane. Sens Actuators B 159(1):328–335Google Scholar
  319. Tas N, Berenschot J, Lammerink T, Elwenspoek M, Van den Berg A (2002) Nanofluidic bubble pump using surface tension directed gas injection. Anal Chem 74(9):2224–2227Google Scholar
  320. Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220Google Scholar
  321. Terray A, Oakey J, Marr DW (2002) Microfluidic control using colloidal devices. Science 296(5574):1841–1844Google Scholar
  322. Terry SC, Jerman JH, Angell JB (1979) Gas-chromatographic air analyzer fabricated on a silicon-wafer. IEEE Trans Electron Devices 26(12):1880–1886Google Scholar
  323. Teymoori MM, Abbaspour-Sani E (2005) Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sensors Actuators A Phys 117(2):222–229Google Scholar
  324. Thomas L Jr, Bessman S (1975) Prototype for an implantable micropump powdered by piezoelectric disk benders. Trans Am Soc Artif Int Organs 21:516Google Scholar
  325. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584Google Scholar
  326. Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166Google Scholar
  327. Tice JD, Lyon AD, Ismagilov RF (2004) Effects of viscosity on droplet formation and mixing in microfluidic channels. Anal Chim Acta 507(1):73–77Google Scholar
  328. Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the reynolds and the capillary numbers. Langmuir 19(22):9127–9133Google Scholar
  329. Tiensuu A-L, Öhman O, Lundbladh L, Larsson O (2000) Hydrophobic valves by ink-jet printing on plastic CDs with integrated microfluidics. In: Berg A, Olthuis W, Bergveld P (eds) Micro total analysis systems. Springer, Dordrecht, The Netherlands, pp 575–578. doi: 10.1007/978-94-017-2264-3_135 Google Scholar
  330. Tovar AR, Lee AP (2009) Lateral cavity acoustic transducer. Lab Chip 9(1):41–43Google Scholar
  331. Truckenmüller R, Rummler Z, Schaller T, Schomburg K (2002) Low-cost thermoforming of micro fluidic analysis chips. J Micromech Microeng 12(4):375–379Google Scholar
  332. Tsai J-H, Lin L (2002) Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump. Sensors Actuators A Phys 97:665–671Google Scholar
  333. Tsai JH, Liwei L (2002) A thermal-bubble-actuated micronozzle-diffuser pump. J Microelectromech Syst 11(6):665–671Google Scholar
  334. Tsai R-T, Wu C-Y (2011) An efficient micromixer based on multidirectional vortices due to baffles and channel curvature. Biomicrofluidics 5(1):014103Google Scholar
  335. Tsao T, Moroney R, Martin B, White R (1991) Electrochemical detection of localized mixing produced by ultrasonic flexural waves. In: Ultrasonics symposium, 1991, Proceedings. IEEE, Washington, DC, pp 937–940Google Scholar
  336. Umbanhowar PB, Prasad V, Weitz DA (1999) Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 16(2):347–351Google Scholar
  337. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116Google Scholar
  338. Van de Pol FCM, Van Lintel HTG, Elwenspoek M, Fluitman JHJ (1990) A thermopneumatic micropump based on micro-engineering techniques. Sensors Actuators A Phys 21(1–3):198–202Google Scholar
  339. van der Wijngaart W, Ask H, Enoksson P, Stemme G (2002) A high-stroke, high-pressure electrostatic actuator for valve applications. Sensors Actuators A Phys 100(2–3):264–271Google Scholar
  340. van Kan JA, Zhang C, Perumal Malar P, van der Maarel JRC (2012) High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies. Biomicrofluidics 6(3):36502Google Scholar
  341. van Lintel HTG, van De Pol FCM, Bouwstra S (1988) A piezoelectric micropump based on micromachining of silicon. Sensors Actuators 15(2):153–167Google Scholar
  342. van Oudheusden BW (1992) Silicon thermal flow sensors. Sensors Actuators A Phys 30(1–2):5–26Google Scholar
  343. Veenstra T, Lammerink T, Elwenspoek M, Van Den Berg A (1999) Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems. J Micromech Microeng 9(2):199Google Scholar
  344. Vella SJ, Beattie P, Cademartiri R, Laromaine A, Martinez AW, Phillips ST, Mirica KA, Whitesides GM (2012) Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal Chem 84(6):2883–2891Google Scholar
  345. Vrouwe EX, Luttge R, van den Berg A (2004) Direct measurement of lithium in whole blood using microchip capillary electrophoresis with integrated conductivity detection. Electrophoresis 25(10–11):1660–1667Google Scholar
  346. Wagner B, Quenzer HJ, Hoerschelmann S, Lisec T, Juerss M (1996) Bistable microvalve with pneumatically coupled membranes. In: The ninth annual international workshop on micro electro mechanical systems (MEMS 1996), 11–15 Feb 1996. IEEE, Washington, DC, pp 384–388. doi: 10.1109/MEMSYS.1996.494012 Google Scholar
  347. Waibel G, Kohnle J, Cernosa R, Storz M, Schmitt M, Ernst H, Sandmaier H, Zengerle R, Strobelt T (2003) Highly integrated autonomous microdosage system. Sensors Actuators A Phys 103(1–2):225–230Google Scholar
  348. Waldbaur A, Carneiro B, Hettich P, Wilhelm E, Rapp BE (2013a) Computer-aided microfluidics (CAMF): from digital 3D-CAD models to physical structures within a day. Microfluid Nanofluid 15(5):625–635Google Scholar
  349. Waldbaur A, Kittelmann J, Radtke CP, Hubbuch J, Rapp BE (2013b) Microfluidics on liquid handling stations (μF-on-LHS): an industry compatible chip interface between microfluidics and automated liquid handling stations. Lab Chip 13(12):2337–2343Google Scholar
  350. Waldbaur A, Rapp H, Länge K, Rapp BE (2011) Let there be chip – towards rapid prototyping of microfluidic devices: one-step manufacturing processes (cover article). Anal Methods 3(12):2681–2716Google Scholar
  351. Waldbaur A, Waterkotte B, Schmitz K, Rapp BE (2012) Maskless projection lithography for the fast and flexible generation of grayscale protein patterns. Small 8(10):1570–1578Google Scholar
  352. Walker G, Ozers M, Beebe D (2004) Cell infection within a microfluidic device using virus gradients. Sens Actuators B 98(2):347–355Google Scholar
  353. Walker GM, Beebe DJ (2002) A passive pumping method for microfluidic devices. Lab Chip 2(3):131–134Google Scholar
  354. Wang H, Chen Y, Hassibi A, Scherer A, Hajimiri A (2009) A frequency-shift CMOS magnetic biosensor array with single-bead sensitivity and no external magnet. In: IEEE international, 2009, solid-state circuits conference-digest of technical papers, 2009, ISSCC 2009. IEEE, Washington, DC, pp 438–439Google Scholar
  355. Wang H, Iovenitti P, Harvey E, Masood S (2002) Optimizing layout of obstacles for enhanced mixing in microchannels. Smart Mater Struct 11(5):662Google Scholar
  356. Wang Y-C, Choi MH, Han J (2004) Two-dimensional protein separation with advanced sample and buffer isolation using microfluidic valves. Anal Chem 76(15):4426–4431Google Scholar
  357. Wang Y, Zhe J, Chung BT, Dutta P (2008) A rapid magnetic particle driven micromixer. Microfluid Nanofluid 4(5):375–389Google Scholar
  358. Wego A, Pagel L (2001) A self-filling micropump based on PCB technology. Sensors Actuators A Phys 88(3):220–226Google Scholar
  359. Weigl BH, Kriebel J, Mayes KJ, Bui T, Yager P (1999) Whole blood diagnostics in standard gravity and microgravity by use of microfluidic structures (T-sensors). Microchim Acta 131(1–2):75–83Google Scholar
  360. Wen CY, Yeh CP, Tsai CH, Fu LM (2009) Rapid magnetic microfluidic mixer utilizing AC electromagnetic field. Electrophoresis 30(24):4179–4186Google Scholar
  361. Widmer HM (1983) Trends in industrial analytical-chemistry. Trac Trends Anal Chem 2(1):R8–R10Google Scholar
  362. Wilhelm E, Neumann C, Duttenhofer T, Pires L, Rapp BE (2013a) Connecting microfluidic chips using a chemically inert, reversible, multichannel chip-to-world-interface. Lab Chip 13(22):4343–4351Google Scholar
  363. Wilhelm E, Neumann C, Sachsenheimer K, Schmitt T, Lange K, Rapp BE (2013b) Rapid bonding of polydimethylsiloxane to stereolithographically manufactured epoxy components using a photogenerated intermediary layer. Lab Chip 13(12):2268–2271Google Scholar
  364. Winkley J, Yanowski L, Hynes W (1937) A systematic semimicro procedure for the qualitative analysis of the commoner cations. Mikrochemie 21(1):102–115Google Scholar
  365. Witek MA, Llopis SD, Wheatley A, McCarley RL, Soper SA (2006) Purification and preconcentration of genomic DNA from whole cell lysates using photoactivated polycarbonate (PPC) microfluidic chips. Nucleic Acids Res 34(10):e74Google Scholar
  366. Woias P, Hauser K, Yacoub-George E (2000) An active silicon micromixer for μTAS applications. In: Berg A, Olthuis W, Bergveld P (eds) Micro total analysis systems. Springer, Dordrecht, The Netherlands, pp 277–282Google Scholar
  367. Wong SH, Ward MC, Wharton CW (2004) Micro T-mixer as a rapid mixing micromixer. Sens Actuators B 100(3):359–379Google Scholar
  368. Worgull M, Kolew A, Heilig M, Schneider M, Dinglreiter H, Rapp BE (2011) Hot embossing of high performance polymers. Microsyst Technol 17(4):585–592Google Scholar
  369. Wu C-Y, Liao W-H, Tung Y-C (2011) Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems. Lab Chip 11(10):1740–1746Google Scholar
  370. Xing Y, Grosjean C, Yu-Chong T (1999) Design, fabrication, and testing of micromachined silicone rubber membrane valves. J Microelectromech Syst 8(4):393–402Google Scholar
  371. Yamahata C, Lacharme F, Burri Y, Gijs MAM (2005) A ball valve micropump in glass fabricated by powder blasting. Sens Actuators B 110(1):1–7Google Scholar
  372. Yan D, Yang C, Miao J, Lam Y, Huang X (2009) Enhancement of electrokinetically driven microfluidic T‐mixer using frequency modulated electric field and channel geometry effects. Electrophoresis 30(18):3144–3152Google Scholar
  373. Yang B, Lin Q (2009) A latchable phase-change microvalve with integrated heaters. J Microelectromech Syst 18(4):860–867Google Scholar
  374. Yang J, Liu Y, Rauch CB, Stevens RL, Liu RH, Lenigk R, Grodzinski P (2002) High sensitivity PCR assay in plastic micro reactors. Lab Chip 2(4):179–187Google Scholar
  375. Yang X, Grosjean C, Tai Y-C, Ho C-M (1998) A MEMS thermopneumatic silicone rubber membrane valve. Sensors Actuators A Phys 64(1):101–108Google Scholar
  376. Yang Z, Goto H, Matsumoto M, Maeda R (2000) Active micromixer for microfluidic systems using lead-zirconate-titanate(PZT)-generated ultrasonic vibration. Electrophoresis 21(1):116–119Google Scholar
  377. Yaralioglu GG, Wygant IO, Marentis TC, Khuri-Yakub BT (2004) Ultrasonic mixing in microfluidic channels using integrated transducers. Anal Chem 76(13):3694–3698Google Scholar
  378. Yardley SJS, Linkenheimer WH (1971) Osmotic fluid reservoir for osmotically activated long-term continuous injector device. United States PatentGoogle Scholar
  379. Yasuda K (2000) Non-destructive, non-contact handling method for biomaterials in micro-chamber by ultrasound. Sens Actuators B 64(1):128–135Google Scholar
  380. Ymeti A, Greve J, Lambeck PV, Wink T, Stephan WFM, Tom AM, Wijn RR, Heideman RG, Subramaniam V, Kanger JS (2006) Fast, Ultrasensitive Virus Detection Using a Young Interferometer Sensor. Nano Lett 7(2):394–397Google Scholar
  381. Yoshida K, Kikuchi M, Park JH, Yokota S (2002) Fabrication of micro electro-rheological valves (ER valves) by micromachining and experiments. Sensors Actuators A Phys 95(2–3):227–233Google Scholar
  382. Young EW, Berthier E, Guckenberger DJ, Sackmann E, Lamers C, Meyvantsson I, Huttenlocher A, Beebe DJ (2011) Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays. Anal Chem 83(4):1408–1417Google Scholar
  383. Yu-Chuan S, Liwei L, Pisano AP (2002) A water-powered osmotic microactuator. J Microelectromech Syst 11(6):736–742Google Scholar
  384. Zeng J, Banerjee D, Deshpande M, Gilbert JR, Duffy DC, Kellogg GJ (2000) Design analyses of capillary burst valves in centrifugal microfluidics. In: Proceedings of the micro total analysis systems symposium (lTAS 2000) May, 2000. pp 14–18Google Scholar
  385. Zeng S, Chen C-H, Mikkelsen JC Jr, Santiago JG (2001) Fabrication and characterization of electroosmotic micropumps. Sens Actuators B 79(2–3):107–114Google Scholar
  386. Zeng S, Chen C-H, Santiago JG, Chen J-R, Zare RN, Tripp JA, Svec F, Fréchet JM (2002) Electroosmotic flow pumps with polymer frits. Sens Actuators B 82(2):209–212Google Scholar
  387. Zengerle R, Richter A, Sandmaier H (1992) A micro membrane pump with electrostatic actuation. In: Micro electro mechanical systems, 1992, MEMS’92, Proceedings An investigation of micro structures, sensors, actuators, machines and robot, 4–7 Feb 1992. IEEE, Washington, DC, pp 19–24. doi: 10.1109/memsys.1992.187684 Google Scholar
  388. Zengerle R, Richter M (1994) Simulation of microfluid systems. J Micromech Microeng 4(4):192Google Scholar
  389. Zengerle R, Ulrich J, Kluge S, Richter M, Richter A (1995) A bidirectional silicon micropump. Sensors Actuators A Phys 50(1–2):81–86Google Scholar
  390. Zhao B, Moore JS, Beebe DJ (2001) Surface-directed liquid flow inside microchannels. Science 291(5506):1023–1026Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Microstructure Technology (IMT)Karlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany

Personalised recommendations