A Considered Approach to Lab-on-a-Chip Fabrication

  • G. D. KiplingEmail author
  • S. J. Haswell
  • N. J. Brown


This chapter details the common fabrication processes for lab-on-a-chip (LOC) devices. Particular attention has been paid to how the functionality of these devices can be enhanced though the adoption of a considered engineering based approach to chip fabrication which encompasses the design, material selection and manufacture process stages. Fabrication considerations in this chapter extend to the potential for mass production of LOC devices using a range of materials and manufacturing methods. The adoption of more time and cost-effective fabrication methodologies is critical to the future integration of these devices into mainstream applications. Additional factors such as device repeatability, dimensional tolerance and quality control, all of which vary between fabrication processes, are also considered and discussed.


Work Piece Computer Numerical Control Assembly Method Injection Moulding Computer Numerical Control Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abgrall P, Gue AM (2007) Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. Journal of Micromechanics and Microengineering 17(5):R15–R49CrossRefGoogle Scholar
  2. Becker H (2011) Famous last words. Lab Chip 11(13):2133–2134CrossRefGoogle Scholar
  3. Becker H, Heim U (2000) Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sens Actuator A-Phys 83(1–3):130–135CrossRefGoogle Scholar
  4. Becker H, Locascio LE (2002) Polymer microfluidic devices. Talanta 56(2):267–287CrossRefGoogle Scholar
  5. Chen Q, Li G, Jin QH, Zhao JL, Ren QS, Xu YS (2007) A rapid and low-cost procedure for fabrication of glass microfluidic devices. Journal of Microelectromechanical Systems 16(5):1193–1200CrossRefGoogle Scholar
  6. Chen CS, Chen SC, Liao WH, Chien RD, Lin SH (2010) Micro injection molding of a micro-fluidic platform. Int Commun Heat Mass Transf 37(9):1290–1294CrossRefGoogle Scholar
  7. Chien RD (2006a) Hot embossing of microfluidic platform. Int Commun Heat Mass Transf 33(5):645–653CrossRefGoogle Scholar
  8. Chien RD (2006b) Micromolding of biochip devices designed with microchannels. Sens Actuator A-Phys 128(2):238–247CrossRefGoogle Scholar
  9. Daridon A, Fascio V, Lichtenberg J, Wutrich R, Langen H, Verpoorte E, de Rooij NF (2001) Multi-layer microfluidic glass chips for microanalytical applications. Fresenius Journal of Analytical Chemistry 371(2):261–269CrossRefGoogle Scholar
  10. Eddings MA, Johnson MA, Gale BK (2008) Determining the optimal PDMS-PDMS bonding technique for microfluidic devices. Journal of Micromechanics and Microengineering 18(6)Google Scholar
  11. Friend J, Yeo L (2010) Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 4(2)Google Scholar
  12. Ghobeity A, Papini M, Spelt JK (2009) Abrasive jet micro-machining of planar areas and transitional slopes in glass using target oscillation. Journal of Materials Processing Technology 209(11):5123–5132CrossRefGoogle Scholar
  13. Iliescu C, Chen BT, Miao J (2008) On the wet etching of Pyrex glass. Sens Actuator A-Phys 143(1):154–161CrossRefGoogle Scholar
  14. Iliescu C, Taylor H, Avram M, Miao JM, Franssila S (2012) A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6(1)Google Scholar
  15. Khan AA, Haque MM (2007) Performance of different abrasive materials during abrasive water jet machining of glass. Journal of Materials Processing Technology 191(1–3):404–407CrossRefGoogle Scholar
  16. Kim J, Surapaneni R, Gale BK (2009) Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite. Lab Chip 9(9):1290–1293CrossRefGoogle Scholar
  17. King PH, Jones G, Morgan H, de Planque MRR, Zauner KP (2014) Interdroplet bilayer arrays in millifluidic droplet traps from 3D-printed moulds. Lab Chip 14(4):722–729CrossRefGoogle Scholar
  18. Kitson PJ, Rosnes MH, Sans V, Dragone V, Cronin L (2012) Configurable 3D-Printed millifluidic and microfluidic ‘lab on a chip’ reactionware devices. Lab Chip 12(18):3267–3271CrossRefGoogle Scholar
  19. Krejcova L, Nejdl L, Rodrigo MAM, Zurek M, Matousek M, Hynek D, Zitka O, Kopel P, Adam V, Kizek R (2014) 3D printed chip for electrochemical detection of influenza virus labeled with CdS quantum dots. Biosensors & Bioelectronics 54:421–427CrossRefGoogle Scholar
  20. Mair DA, Geiger E, Pisano AP, Frechet JMJ, Svec F (2006) Injection molded microfluidic chips featuring integrated interconnects. Lab Chip 6(10):1346–1354CrossRefGoogle Scholar
  21. Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proceedings of the National Academy of Sciences of the United States of America 105(50):19606–19611CrossRefGoogle Scholar
  22. McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts of Chemical Research 35(7):491–499CrossRefGoogle Scholar
  23. McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu HK, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21(1):27–40CrossRefGoogle Scholar
  24. Nouraei H, Kowsari K, Spelt JK, Papini M (2014) Surface evolution models for abrasive slurry jet micro-machining of channels and holes in glass. Wear 309(1–2):65–73CrossRefGoogle Scholar
  25. Park DS, Cho MW, Lee H, Cho WS (2004) Micro-grooving of glass using micro-abrasive jet machining. Journal of Materials Processing Technology 146(2):234–240CrossRefGoogle Scholar
  26. Sein H, Ahmed W, Jackson M, Woodwards R, Polini R (2004) Performance and characterisation of CVD diamond coated, sintered diamond and WC-Co cutting tools for dental and micromachining applications. Thin Solid Films 447:455–461CrossRefGoogle Scholar
  27. Stjernstrom M, Roeraade J (1998) Method for fabrication of microfluidic systems in glass. Journal of Micromechanics and Microengineering 8(1):33–38CrossRefGoogle Scholar
  28. Truckenmuller R, Ahrens R, Cheng Y, Fischer G, Saile V (2006) An ultrasonic welding based process for building up a new class of inert fluidic microsensors and -actuators from polymers. Sens Actuator A-Phys 132(1):385–392CrossRefGoogle Scholar
  29. Tsao CW, DeVoe DL (2009) Bonding of thermoplastic polymer microfluidics. Microfluidics and Nanofluidics 6(1):1–16CrossRefGoogle Scholar
  30. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373CrossRefGoogle Scholar
  31. Yan BH, Wang AC, Huang CY, Huang FY (2002) Study of precision micro-holes in borosilicate glass using micro EDM combined with micro ultrasonic vibration machining. Int J Mach Tools Manuf 42(10):1105–1112CrossRefGoogle Scholar
  32. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13(12):2210–2251CrossRefGoogle Scholar
  33. Zhou M, Ngoi BKA, Yusoff MN, Wang XJ (2006) Tool wear and surface finish in diamond cutting of optical glass. J Mater Process Technol 174(1–3):29–33CrossRefGoogle Scholar
  34. Zong WJ, Li ZQ, Sun T, Cheng K, Li D, Dong S (2010) The basic issues in design and fabrication of diamond-cutting tools for ultra-precision and nanometric machining. Int J Mach Tools Manuf 50(4):411–419CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of HullHullUK

Personalised recommendations