Skip to main content

Using Coherence for Robust Online Brain-Computer Interface (BCI) Control

  • Conference paper

Part of the Communications in Computer and Information Science book series (CCIS,volume 438)

Abstract

A Brain-Computer Interface (BCI) enables the user to control a computer by brain activity only. In this paper we investigated the use of different brain connectivity methods to control a Magnetoencephalography (MEG)-based Brain-Computer Interface (BCI). We compared the use of coherence, phase synchronisation and a widely used method for spectral power estimation and found coherence to be a more robust feature extraction method, when using the BCI over a longer time interval across sessions. To validate these results we implemented an online BCI system using coherence and could show that coherence also performed more robust in an online setting than traditional methods.

Keywords

  • Brain connectivity
  • Brain-Computer Interface (BCI)
  • Coherence
  • Magnetoencephalogrpahy (MEG)
  • non-stationarity

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-08672-9_43
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-08672-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clinical Neurophysiology 113(6), 767–791 (2002)

    CrossRef  Google Scholar 

  2. Mellinger, J., Schalk, G., Braun, C., Preissl, H., Rosenstiel, W., Birbaumer, N., Kübler, A.: An MEG-based brain-computer interface (BCI). NeuroImage 36(3), 581–593 (2007)

    CrossRef  Google Scholar 

  3. Kaiser, J., Walker, F., Leiberg, S., Lutzenberger, W.: Cortical oscillatory activity during spatial echoic memory. European Journal of Neuroscience 21(2), 587–590 (2005)

    CrossRef  Google Scholar 

  4. Pfurtscheller, G., Neuper, C.: Motor imagery and direct brain-computer communication. Proceedings of the IEEE 89(7), 1123–1134 (2001)

    CrossRef  Google Scholar 

  5. Spiegler, A., Graimann, B., Pfurtscheller, G.: Phase coupling between different motor areas during tongue-movement imagery. Neuroscience Letters 369(1), 50–54 (2004)

    CrossRef  Google Scholar 

  6. Gysels, E., Celka, P.: Phase synchronization for the recognition of mental tasks in a brain-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering 12(4), 406–415 (2004)

    CrossRef  Google Scholar 

  7. Brunner, C., Scherer, R., Graimann, B., Supp, G., Pfurtscheller, G.: Online Control of a Brain-Computer Interface Using Phase Synchronization. IEEE Transactions on Biomedical Engineering 53(12), 2501–2506 (2006)

    CrossRef  Google Scholar 

  8. Wei, Q., Wang, Y., Gao, X., Gao, S.: Amplitude and phase coupling measures for feature extraction in an EEG-based brain-computer interface. Journal of Neural Engineering 4(2), 120 (2007)

    CrossRef  Google Scholar 

  9. Hamner, B., Leeb, R., Tavella, M., del Millan, J.R.: Phase-based features for motor imagery brain-computer interfaces. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 2578–2581 (2011)

    Google Scholar 

  10. Bensch, M., Bogdan, M., Rosenstiel, W.: Phase Synchronization in MEG for Brain-Computer Interfaces. In: Proceedings of the 3rd Int. Brain-Computer Interface Workshop, Graz, pp. 18–19 (September 2006)

    Google Scholar 

  11. Krusienski, D.J., Grosse-Wentrup, M., Galn, F., Coyle, D., Miller, K.J., Forney, E., Anderson, C.W.: Critical issues in state-of-the-art brain-computer interface signal processing. Journal of Neural Engineering 8(2), 025002 (2011)

    Google Scholar 

  12. Spüler, M., Rosenstiel, W., Bogdan, M.: Principal component based covariate shift adaption to reduce non-stationarity in a meg-based brain-computer interface. EURASIP Journal on Advances in Signal Processing 2012(1), 129 (2012)

    CrossRef  Google Scholar 

  13. Priestley, M.B.: Spectral analysis and time series. Academic Press, London (1981)

    MATH  Google Scholar 

  14. Bensch, M., Mellinger, J., Bogdan, M., Rosenstiel, W.: A multiclass BCI using MEG. In: Proceedings of the 4th Int. Brain-Computer Interface Workshop, Graz, pp. 191–196 (September 2008)

    Google Scholar 

  15. Spüler, M., Rosenstiel, W., Bogdan, M.: A fast feature selection method for high-dimensional MEG BCI data. In: Proceedings of the 5th Int. Brain-Computer Interface Conference, Graz, pp. 24–27 (September 2011)

    Google Scholar 

  16. Vapnik, V.N.: Statistical Learning Theory, 1st edn. Wiley-Interscience (September 1998)

    Google Scholar 

  17. Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines (2001), Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  18. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B., et al.: A review of classification algorithms for eeg-based brain-computer interfaces. Journal of Neural Engineering, 4 (2007)

    Google Scholar 

  19. Sugiyama, M., Krauledat, M., Müller, K.-R.: Covariate shift adaptation by importance weighted cross validation. J. Mach. Learn. Res. 8, 985–1005 (2007)

    MATH  Google Scholar 

  20. Vidaurre, C., Blankertz, B.: Towards a cure for bci illiteracy. Brain Topography 23, 194–198 (2010), doi:10.1007/s10548-009-0121-6

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Spüler, M., Rosenstiel, W., Bogdan, M. (2014). Using Coherence for Robust Online Brain-Computer Interface (BCI) Control. In: Mladenov, V.M., Ivanov, P.C. (eds) Nonlinear Dynamics of Electronic Systems. NDES 2014. Communications in Computer and Information Science, vol 438. Springer, Cham. https://doi.org/10.1007/978-3-319-08672-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08672-9_43

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08671-2

  • Online ISBN: 978-3-319-08672-9

  • eBook Packages: Computer ScienceComputer Science (R0)