Quasi-periodic Oscillations in the System of Three Chaotic Oscillators

  • Alexander P. Kuznetsov
  • Yuliya V. Sedova
  • Ludmila V. Turukina
Part of the Communications in Computer and Information Science book series (CCIS, volume 438)


The dynamics of three coupled chaotic Rössler systems is considered. We discuss scenarios for the evolution of different types of regimes. The possibility of two- and three-frequency quasi-periodicity is shown. We considered the occurrence of resonanses on three-frequency torus, which leads to two-freqiency quasi-periodic regimes. The illustrations in the form of charts of the Lyapunov exponents, phase portraits of attractors plotted in the Poincare section and bifurcation diagrams are presented. We discuss the type of quasi-periodic bifurcation in the system.


chaotic oscillations quasi-periodic oscillations invariant tori bifurcation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Temirbayev, A., Nalibayev, Y.D., Zhanabaev, Z.Z., Ponomarenko, V.I., Rosenblum, M.: Autonomous and forced dynamics of oscillator ensembles with global nonlinearcoupling: An experimental study. Phys. Rev. E 87, 062917 (2013)Google Scholar
  2. 2.
    Vlasov, V., Pikovsky, A.: Synchronization of a Josephson junction array in terms of global variables. Phys. Rev. E 88, 022908 (2012)Google Scholar
  3. 3.
    Lee, T.E., Cross, M.C.: Pattern formation with trapped ions. Phys. Rev. Lett. 106, 143001 (2011)CrossRefGoogle Scholar
  4. 4.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press (2001)Google Scholar
  5. 5.
    Osipov, G.V., Pikovsky, A.S., Rosenblum, M.G., Kurths, J.: Phase synchronization effects in a lattice of nonidentical Rossler oscillators. Phys. Rev. E 55, 2353–2361 (1997)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Baesens, C., Guckenheimer, J., Kim, S., MacKay, R.S.: Three coupled oscillators: Mode locking, global bifurcations and toroidal chaos. Physica D 49, 387–475 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Broer, H., Simó, C., Vitolo, R.: The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: The Arnol’d resonance web. Reprint from the Belgian Mathematical Society, 769–787 (2008)Google Scholar
  8. 8.
    Emelianova, Y.P., Kuznetsov, A.P., Turukina, L.V.: Quasi-periodic bifurcations and “amplitude death” in low-dimensional ensemble of van der Pol oscillators. Physics Letters A 378, 153–157 (2014)CrossRefGoogle Scholar
  9. 9.
    Emelianova, Y.P., Kuznetsov, A.P., Turukina, L.V., Sataev, I.R., Chernyshov, N.Y.: A structure of the oscillation frequencies parameter space for the system of dissipatively coupled oscillators. Communications in Nonlinear Science and Numerical Simulation 19, 1203–1212 (2014)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Kuznetsov, A.P., Kuznetsov, S.P., Sataev, I.R., Turukina, L.V.: About Landau–Hopf scenario in a system of coupled self-oscillators. Physics Letters A 377, 3291–3295 (2013)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Broer, H., Simó, C., Vitolo, R.: Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems. Regular and Chaotic Dynamics 16, 154–184 (2011)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexander P. Kuznetsov
    • 1
  • Yuliya V. Sedova
    • 1
  • Ludmila V. Turukina
    • 1
  1. 1.Kotel’nikov Institute of Radio-Engineering and electronics of RAS, Saratov BranchSaratovRussia

Personalised recommendations