Information Fusion Process Design Issues for Hard and Soft Information: Developing an Initial Prototype

Part of the Studies in Computational Intelligence book series (SCI, volume 563)


The Data and Information Fusion (DIF) process can be argued to have three main functions: Common Referencing (CR) (also known as “Alignment”), Data Association (DA), and State Estimation, as shown in Fig. 1.


Data Association Soft Data Social Medium Data Intelligence Analysis Temporal Alignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bowman, C.L.: The dual node network (DNN) data fusion & resource management (DF&RM) architecture AIAA intelligent systems conference, Chicago, 20–22 Sept 2004Google Scholar
  2. 2.
    Prentice, M., Kandefer, M., Shapiro, S.C.: Tractor: a framework for soft information fusion. In: Proceedings of the 13th international conference on information fusion (fusion 2010), Edinburgh, Scotland, UK, July 2010Google Scholar
  3. 3.
    Prentice, M., Shapiro, S.C.: Using propositional graphs for soft information fusion. In: Proceedings of the 14th international conference on information fusion (fusion 2011), Chicago IL, USA, July 2011Google Scholar
  4. 4.
    Gómez-Romero, J., García, J., Kandefer, M., Llinas, J., Molina, J.M., Patricio, M.A., Prentice, M., Shapiro, S.C.: Strategies and techniques for use and exploitation of contextual information in high-level fusion architectures. In: 13th international conference on information fusion (fusion 2010), Edinburgh, Scotland, UK, July 2010Google Scholar
  5. 5.
    A. Kott, P.S. Corpac, COMPOEX Technology To Assist Leaders in Planning And Executing Campaigns In Complex Operational Environments, 12th International Command and Control Research and Technology Symposium: Newport. Rhode Island, USA (2007)Google Scholar
  6. 6.
    Kandefer, M., Shapiro, S.C.: Evaluating spreading activation for soft information fusion. In: Proceedings of the 14th international conference on information fusion (fusion 2011), Chicago, IL, USA, 5–8 July 2011Google Scholar
  7. 7.
    Smith, B., et al. Ontology for the intelligence analyst, in crosstalk. J. Def. Softw. Eng. 18–25, (2012)Google Scholar
  8. 8.
    Waltz, E.: Information understanding: integrating data fusion and data mining processes. In: Proceedings of the IEEE international symposium on circuits and systems, ISCAS ’98, Ann Arbor, Michigan, USA, 1998Google Scholar
  9. 9.
    McMaster, D.: Temporal alignment in soft information processing. In: Proceedings of the 14th international conference on information fusion (fusion 2011), Chicago, Illinois, USA, July 2011Google Scholar
  10. 10.
    Klir, G.J.: A principle of uncertainty and information invariance. Int. J. Gen. Syst. 17, 249–275 (1990)CrossRefzbMATHGoogle Scholar
  11. 11.
    Blasch, E., Llinas, J., Lambert, D., Valin, P., Das, S., Hong, C., Kokar, M., Shahbazian, E.: High level information fusion developments, issues, and grand challenges—fusion10 panel discussion. In: International conference on info fusion (fusion10), Edinburgh. Scotland, UK, July 2010Google Scholar
  12. 12.
    Oussalah, M.: On the probability/possibility transformations: a comparative analysis. Int. J. Gen. Syst. 29(5), 671–718 (2000)CrossRefzbMATHGoogle Scholar
  13. 13.
    Geer, J.F., Klir, G.J.: A mathematical analysis of information- preserving transformations between probabilistic and possibilistic formulations of uncertainty. Int. J. Gen. Syst. 20, 143–176 (1992)CrossRefzbMATHGoogle Scholar
  14. 14.
    Klir, G., Parviz, B.: Probability-possibility transformations: a comparison. Int. J. Gen. Syst. 21(1), 291–310 (1992)CrossRefzbMATHGoogle Scholar
  15. 15.
    Dubois, D., Prade, H.: Unfair coins and necessity measures: a possibilistic interpretation of histograms. Fuzzy Sets Syst. 10, 15–20 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Gross, G., Nagi, R., Sambhoos, K.: A fuzzy graph matching approach in intelligence analysis and maintenance of continuous situational awareness. J. Inf. Fusion 18, 43-61 (2013)Google Scholar
  17. 17.
    Hall, D.L., Llinas, J.: Handbook of multisensor data fusion. CRC Press, Boca Raton (2001)Google Scholar
  18. 18.
    Poore, A., Lu, S., Suchomel, B.: Data association using multiple-frame assignments. In: Liggins M., Hall D., Llinas J. (eds.) Handbook of multisensor datafusion, chapter 13,2nd ed., pp. 299–318. CRC Press, Boca Raton, 2009Google Scholar
  19. 19.
    Poore, A., Rijavec, N.: A lagrangian relaxation algorithm for multidimensional assignment problems arising from multitarget tracking. SIAM J Optim 3, 544–563 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Tauer, G., Nagi, R., Sudit, M.: The graph association problem: mathematical models and a lagrangian heuristic. Nav. Res. Logist. 60(3), 251–268 (2013)Google Scholar
  21. 21.
    Mark Pullen, J., et al.: Joint battle management language (JBML)—US contribution to the C-BML PDG and NATO MSG-048 TA. IEEE European simulation interoperability workshop, Genoa, Italy, June 2007Google Scholar
  22. 22.
    Schade, U., Biermann, J., Frey, M., Kruger, K.: From battle management language (BML) to automatic information fusion. In: Proceedings of the IF and GIS, pp. 84–95, (2007)Google Scholar
  23. 23.
    Lee, H., Zeigler, B.P.: SES-based ontological process for high level information fusion. J. Def. Model. Simul. Appl. Methodol. Technol. 7(4), (2010)Google Scholar
  24. 24.
    Pollard, S., Biermann, A.W.: A measure of semantic complexity for natural language systems. In: Proceedings of NLP complexity workshop: syntactic and semantic complexity in natural language processing systems, Stroudsburg, Pennsylvania, USA, 2000Google Scholar
  25. 25.
    Walsh, D.: Relooking the JDL model for fusion on a global graph. In: National symposium on sensor and data fusion, Las Vegas, Nevada, USA, July 2010Google Scholar
  26. 26.
    Stotz, A., et al.: Incremental graph matching for situation awareness. In: 12th international conference on information fusion (fusion 2012), Seattle, WA, USA, 6–9 July 2009Google Scholar
  27. 27.
    Sambhoos, K. et al.: Enhancements to high level data fusion using graph matching and state space search. Inf. Fusion 11(4), 351–364 (2010)Google Scholar
  28. 28.
    Gross, G.: Continuous preservation of situational awareness through incremental/stochastic graphical methods. In: Proceedings of the 14th international conference on information fusion (fusion 2011), Chicago, IL, USA, 5–8 July 2011Google Scholar
  29. 29.
    Davis, P.K.: Effects based operations: a grand challenge for the analytical community. RAND Report, Santa Monica, CA (2001)Google Scholar
  30. 30.
    Smith, E.A.: Complexity, networking, and effects-based approaches to operations, US DoD Command and control research program publication. (2006)
  31. 31.
    Smith, E.A.: Effects-based operations: applying network centric warfare in peace, crisis and war. CCRP, Washington, DC (2002)Google Scholar
  32. 32.
    Senglaub, M.: Course of action analysis within an effects-based operational context, SANDIA REPORT SAND2001-3497 Nov 2001Google Scholar
  33. 33.
    Llinas, J.: Quantitative aspects of situation management: measuring and testing situation management concepts, intelligent sensing, situation management, impact assessment, and cyber-sensing. Proc. SPIE 7352 (2009)Google Scholar
  34. 34.
    Holsopple, J., Yang, S.: Fusia: future situation and impact awareness. In: Proceedings of fusion 2008: the international conference on information fusion, Cologne, Germany, July 2008Google Scholar
  35. 35.
    Llinas, J.: Situation management in counterinsurgency operations: an overview of operational art and relevant technologies. In: Proceedings of the 14th international conference on information fusion (fusion 2011), Chicago, IL, USA, July 2011Google Scholar
  36. 36.
    Pirolli, P., Card, S.K.: The sensemaking process and leverage points for analyst technology. In: Proceedings of the 2005 international conference on intelligence analysis, McLean, Virginia, USA, 2005Google Scholar
  37. 37.
    Klein, G., Moon, B., Hoffman, R.F.: Making sense of sensemaking I: alternative perspectives. IEEE Intell. Syst. 21(4), 70–73 (2006)CrossRefGoogle Scholar
  38. 38.
    Kurtz, C.F, Snowden, D.J.: The new dynamics of strategy: sense-making in a complex and complicated world. IBM Syst. J. 42(3), 462–483. (2003)Google Scholar
  39. 39.
    Louvieris, P., et al. Smart decision support system using parsimonious information fusion. In: Proceedings of the 7th international conference on information fusion(fusion 2005), Philadelphia, PA, USA, July 2005Google Scholar
  40. 40.
    Solano, M.A., et al.: High-Level fusion for intelligence applications using recombinant cognition synthesis. Inf. Fusion Jl 13(1), (2012)Google Scholar
  41. 41.
    Diaz, S.K.: Where do I start? Decision making in complex novel environments, naval postgraduate school thesis, Sept 2010Google Scholar
  42. 42.
    Boin, A., et al.: The politics of crisis management: public leadership under pressure. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  43. 43.
    Croskerry, P.A.: Universal model of diagnostic reasoning. Acad. Med. 84(8), 1022–1028, (2009)Google Scholar
  44. 44.
    Blasch, E.P., Plano, S.: JDL level 5 fusion model: user refinement issues and applications in group tracking. In: Proceedings SPIE 4729, signal processing, sensor fusion, and target recognition XI, p. 270, 31 July 2002Google Scholar
  45. 45.
    Hall, D.L., Jordan, J.M.: Human-centered information fusion. Artech House, Norwood, MA (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1. Center for Multisource Information FusionUniversity at BuffaloBuffaloUSA

Personalised recommendations