Skip to main content

Detection and Utilization of Emotional State for Disabled Users

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 8547)

Abstract

In this paper, we present an experimental approach to design systems sensitive to emotion. We describe a system for the detection of emotional states based on physiological signals and an application use case utilizing the detected emotional state. The application is an emotion management system to be used for the support in the improvement of life conditions of users suffering from cerebral palsy (CP). The system presented here combines effectively biofeedback sensors and a set of software algorithms to detect the current emotional state of the user and to react to them appropriately.

Keywords

  • Affective Computing
  • Machine Learning Algorithm
  • Disabled Person
  • Context
  • Emotion
  • Emotion Management
  • User Interface
  • E-Learning
  • Web-Based

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-08596-8_39
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-08596-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradley, M.M., Lang, P.J.: The International Affective Digitized Sounds, 2nd edn. (IADS-2): Affective Ratings of Sounds and Instruction Manual NIMH Center for the Study of Emotion and Attention 2007 (2007)

    Google Scholar 

  2. Goleman, D.: Emotional Intelligence. Bantam Books, New York (1995)

    Google Scholar 

  3. Kolb, H.J.: Informationsverarbeitung in der Messtechnik zur Diagnose und Qualitätssicherung. In: 43rd International Scientific Colloquium, Technical University of Ilmenau, September 21-24 (1998)

    Google Scholar 

  4. Mohamad, Y.: Integration of Emotional Intelligence in Interface Agents: The example of a Training Software for Learning-Disabled Children (2005) ISBN-13: 978-3832244637

    Google Scholar 

  5. Picard, R.: IBM Systems Journal 39(3&4) (2000)

    Google Scholar 

  6. Rigoll, G., Müller, S.: Statistical Pattern Recognition Techniques for Multimodal Human Computer Interaction and Multimedia Information Processing. In: Survey Paper, Int. Workshop “Speech and Computer”, Moscow, Russia, October, pp. 60–69 (1999)

    Google Scholar 

  7. Shi, Y., et al.: Personalized Stress Detection from Physiological Measurements. In: International Symposium on Quality of Life Technology (2010)

    Google Scholar 

  8. Villarejo, M.V., Zapirain, B.G., Zorrilla, A.M.: A Stress Sensor Based on Galvanic Skin Response (GSR) Controlled by ZigBee (2012), www.mdpi.com/journal/sensors-2012 sensors ISSN 1424-8220

  9. Cuthbert, B.N., Schupp, H.T., Bradley, M.M., Birbaumer, N., Lang, P.J.: Brain potentials in affective picture processing: covariation with autonomic arousal and affective report. Biol. Psychol. 52(2), 95–111 (2000)

    CrossRef  Google Scholar 

  10. Davidson, R.J., Ekman, P., Saron, C.D., Senulis, J.A., Friesen, W.V.: Approach-withdrawal and cerebral asymmetry: emotional expression and brain physiology. I. J. Pers. Soc. Psychol. 58(2), 330–341 (1990)

    CrossRef  Google Scholar 

  11. Gershenfeld, N.A.: When Things Start to Think. Owl Books, New York (2000)

    Google Scholar 

  12. Sharma, N., Gedeon, T.: Objective measures, sensors and computational techniques for stress recognition and classification: a survey. Comput. Methods Programs Biomed. 108(3), 1287–1301 (2012)

    CrossRef  Google Scholar 

  13. Garay, N., Cearreta, I., López, J.M., Fajardo, I.: Assistive technology and affective mediation. An Interdiscip. J. Humans ICT Environ. 2(1), 55–83 (2006)

    CrossRef  Google Scholar 

  14. Bethel, C.L., Salomon, K., Murphy, R.R., Burke, J.L.: Survey of Psychophysiology Measurements Applied to Human-Robot Interaction. In: RO-MAN 2007 - The 16th IEEE International Symposium on Robot and Human Interactive Communication, pp. 732–737 (2007)

    Google Scholar 

  15. Calvo, R.A., D’Mello, S.: Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications. IEEE Trans. Affect. Comput. 1(1), 18–37 (2010)

    CrossRef  Google Scholar 

  16. Calvo, R., Brown, I., Scheding, S.: Effect of experimental factors on the recognition of affective mental states through physiological measures. In: Nicholson, A., Li, X. (eds.) AI 2009. LNCS, vol. 5866, pp. 62–70. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  17. Bradley, M.M., Lang, P.J.: The International Affective Picture System (IAPS) in the study of emotion and attention. In: Coan, J.A., Allen, J.J.B. (eds.) Handbook of Emotion Elicitation and Assessment, pp. 29–46. Oxford University Press (2007)

    Google Scholar 

  18. Bradley, M.M., Lang, P.J.: Measuring emotion: the Self-Assessment Manikin and the Semantic Differential. J. Behav. Ther. Exp. Psychiatry 25(1), 49–59 (1994)

    CrossRef  Google Scholar 

  19. Schlogl, A., et al.: A fully automated correction method of EOG artifacts in EEG recordings. Clin. Neurophysiol. 118(1), 98–104 (2007), doi:10.1016/j.clinph.2006.09.003

    MathSciNet  CrossRef  Google Scholar 

  20. Chang, C., Lin, C.: LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2(3) (2011) DOI citeulike-article-id: 9306445

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mohamad, Y. et al. (2014). Detection and Utilization of Emotional State for Disabled Users. In: Miesenberger, K., Fels, D., Archambault, D., Peňáz, P., Zagler, W. (eds) Computers Helping People with Special Needs. ICCHP 2014. Lecture Notes in Computer Science, vol 8547. Springer, Cham. https://doi.org/10.1007/978-3-319-08596-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08596-8_39

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08595-1

  • Online ISBN: 978-3-319-08596-8

  • eBook Packages: Computer ScienceComputer Science (R0)