Skip to main content

REX – A Tool for Discovering Evolution Trends in Ontology Regions

  • Conference paper
Data Integration in the Life Sciences (DILS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8574))

Included in the following conference series:


A large number of life science ontologies has been developed to support different application scenarios such as gene annotation or functional analysis. The continuous accumulation of new insights and knowledge affects specific portions in ontologies and thus leads to their adaptation. Therefore, it is valuable to study which ontology parts have been extensively modified or remained unchanged. Users can monitor the evolution of an ontology to improve its further development or apply the knowledge in their applications. Here we present REX (Region Evolution Explorer) a web-based system for exploring the evolution of ontology parts (regions). REX provides an interactive and user-friendly interface to identify (un)stable regions in large life science ontologies and is available at .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others


  1. Bodenreider, O., Stevens, R.: Bio-ontologies: current trends and future directions. Briefings in Bioinformatics 7(3) (2006)

    Google Scholar 

  2. Groß, A., Hartung, M., Prüfer, K., et al.: Impact of ontology evolution on functional analyses. Bioinformatics 28(20) (2012)

    Google Scholar 

  3. Groza, T., Tudorache, T., Dumontier, M.: Commentary: State of the art and open challenges in community-driven knowledge curation. Journal of Biomedical Informatics 46(1) (2013)

    Google Scholar 

  4. Hartung, M., Gross, A., Kirsten, T., Rahm, E.: Discovering Evolving Regions in Life Science Ontologies. In: Lambrix, P., Kemp, G. (eds.) DILS 2010. LNCS, vol. 6254, pp. 19–34. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Hartung, M., Gross, A., Rahm, E.: CODEX: exploration of semantic changes between ontology versions. Bioinformatics 28(6) (2012)

    Google Scholar 

  6. Hartung, M., Kirsten, T., Gross, A., Rahm, E.: OnEX: Exploring changes in life science ontologies. BMC Bioinformatics 10(1) (2009)

    Google Scholar 

  7. Hartung, M., Terwilliger, J.F., Rahm, E.: Recent Advances in Schema and Ontology Evolution. In: Schema Matching and Mapping. Springer, Heidelberg (2011)

    Google Scholar 

  8. Lambrix, P., Tan, H., Jakoniene, V., Strömbäck, L.: Biological ontologies. In: Semantic Web. Springer, Heidelberg (2007)

    Google Scholar 

  9. Malone, J., Stevens, R.: Measuring the level of activity in community built bio-ontologies. Journal of Biomedical Informatics 46(1) (2013)

    Google Scholar 

  10. Noy, N.F., Shah, N.H., Whetzel, P., et al.: BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Research 37(suppl. 2) (2009)

    Google Scholar 

  11. Park, J.C., Kim, T., Park, J.: Monitoring the evolutionary aspect of the gene ontology to enhance predictability and usability. BMC Bioinformatics 9 (2008)

    Google Scholar 

  12. Park, Y.R., Park, C.H., Kim, J.H.: GOChase: correcting errors from Gene Ontology-based annotations for gene products. Bioinformatics 21(6) (2005)

    Google Scholar 

  13. Sioutos, N., De Coronado, S., Haber, M.W., et al.: NCI Thesaurus: a semantic model integrating cancer-related clinical and molecular information. Journal of Biomedical Informatics 40(1) (2007)

    Google Scholar 

  14. Smith, B., Ashburner, M., Rosse, C., et al.: The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nature Biotechnology 25(11) (2007)

    Google Scholar 

  15. Subramanian, A., Tamayo, P., Mootha, V.K., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102(43) (2005)

    Google Scholar 

  16. Tudorache, T., Noy, N.F., Tu, S., Musen, M.A.: Supporting collaborative ontology development in protégé. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 17–32. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Christen, V., Groß, A., Hartung, M. (2014). REX – A Tool for Discovering Evolution Trends in Ontology Regions. In: Galhardas, H., Rahm, E. (eds) Data Integration in the Life Sciences. DILS 2014. Lecture Notes in Computer Science(), vol 8574. Springer, Cham.

Download citation

  • DOI:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08589-0

  • Online ISBN: 978-3-319-08590-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics