SAT-Based Decision Procedure for Analytic Pure Sequent Calculi

  • Ori Lahav
  • Yoni Zohar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8562)


We identify a wide family of analytic sequent calculi for propositional non-classical logics whose derivability problem can be uniformly reduced to SAT. The proposed reduction is based on interpreting these calculi using non-deterministic semantics. Its time complexity is polynomial, and, in fact, linear for a useful subfamily. We further study an extension of such calculi with Next operators, and show that this extension preserves analyticity and is subject to a similar reduction to SAT. A particular interesting instance of these results is a HORNSAT-based linear-time decision procedure for Gurevich and Neeman’s primal infon logic and several natural extensions of it.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avron, A.: Simple consequence relations. Inf. Comput. 92(1), 105–139 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Avron, A.: Classical gentzen-type methods in propositional many-valued logics. In: Fitting, M., Orłowska, E. (eds.) Beyond Two: Theory and Applications of Multiple-Valued Logic. Studies in Fuzziness and Soft Computing, vol. 114, pp. 117–155. Physica-Verlag HD (2003)Google Scholar
  3. 3.
    Avron, A., Konikowska, B., Zamansky, A.: Modular construction of cut-free sequent calculi for paraconsistent logics. In: 2012 27th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 85–94 (2012)Google Scholar
  4. 4.
    Avron, A., Konikowska, B., Zamansky, A.: Cut-free sequent calculi for c-systems with generalized finite-valued semantics. Journal of Logic and Computation 23(3), 517–540 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Avron, A., Lev, I.: Non-deterministic multiple-valued structures. Journal of Logic and Computation 15(3), 241–261 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Beklemishev, L., Gurevich, Y.: Propositional primal logic with disjunction. Journal of Logic and Computation (2012)Google Scholar
  7. 7.
    Béziau, J.-Y.: Sequents and bivaluations. Logique et Analyse 44(176), 373–394 (2001)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Bjørner, N., de Caso, G., Gurevich, Y.: From primal infon logic with individual variables to datalog. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning. LNCS, vol. 7265, pp. 72–86. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Blass, A., Gurevich, Y.: Abstract hilbertian deductive systems, infon logic, and datalog. Information and Computation 231, 21–37 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Cai, J., Paige, R.: Using multiset discrimination to solve language processing problems without hashing. Theoretical Computer Science 145(12), 189–228 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Cotrini, C., Gurevich, Y.: Basic primal infon logic. Journal of Logic and Computation (2013)Google Scholar
  12. 12.
    Degtyarev, A., Voronkov, A.: The inverse method. In: Handbook of Automated Reasoning, vol. 1, pp. 179–272 (2001)Google Scholar
  13. 13.
    Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of propositional horn formulae. The Journal of Logic Programming 1(3), 267–284 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: Handbook of Knowledge Representation. Foundations of Artificial Intelligence, vol. 3, pp. 89–134. Elsevier (2008)Google Scholar
  15. 15.
    Gurevich, Y., Neeman, I.: Logic of infons: The propositional case. ACM Trans. Comput. Logic 9, 1–9 (2011)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Kawai, H.: Sequential calculus for a first order infinitary temporal logic. Mathematical Logic Quarterly 33(5), 423–432 (1987)CrossRefzbMATHGoogle Scholar
  17. 17.
    Kowalski, R.: Logic for Problem-solving. North-Holland Publishing Co., Amsterdam (1986)Google Scholar
  18. 18.
    Wansing, H.: Sequent systems for modal logics. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 8, pp. 61–145. Springer (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ori Lahav
    • 1
  • Yoni Zohar
    • 1
  1. 1.School of Computer ScienceTel Aviv UniversityIsrael

Personalised recommendations