Skip to main content

Visibly Linear Temporal Logic

  • Conference paper
Automated Reasoning (IJCAR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8562))

Included in the following conference series:

Abstract

We introduce a robust and tractable temporal logic, we call Visibly Linear Temporal Logic (VLTL), which captures the full class of Visibly Pushdown Languages. The novel logic avoids fix points and provides instead natural temporal operators with simple and intuitive semantics. We prove that the complexities of the satisfiability and visibly pushdown model checking problems are the same as for other well known logics, like CaReT and the nested word temporal logic NWTL, which in contrast are strictly more limited in expressive power than VLTL. Moreover, formulas of CaReT and NWTL can be easily and inductively translated in linear-time into VLTL.

This work was funded in part by Spanish MINECO Project “TIN2012-39391-C04-01 STRONGSOFT” and by Spanish MINECO Project “TIN2012-38137-C02 VIVAC”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. IEEE Standard for Property Specification Language (PSL). IEEE Standard 1850–2010 (April 2010)

    Google Scholar 

  2. Alur, R.: Marrying words and trees. In: Proc. 26th PODS, pp. 233–242. ACM (2007)

    Google Scholar 

  3. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L.: First-order and temporal logics for nested words. In: Proc. 22nd LICS, pp. 151–160. IEEE Computer Society (2007)

    Google Scholar 

  4. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 467–481. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. 36th STOC, pp. 202–211. ACM (2004)

    Google Scholar 

  6. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3) (2009)

    Google Scholar 

  7. Arenas, M., Barceló, P., Libkin, L.: Regular languages of nested words: Fixed points, automata, and synchronization. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 888–900. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A., Mador-Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The ForSpec temporal logic: A new temporal property-specification language. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 296–311. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Ball, T., Rajamani, S.K.: Bebop: a symbolic model checker for boolean programs. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 113–130. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Bollig, B., Cyriac, A., Gastin, P., Zeitoun, M.: Temporal logics for concurrent recursive programs: Satisfiability and model checking. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 132–144. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Bozzelli, L.: Alternating automata and a temporal fixpoint calculus for visibly pushdown languages. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 476–491. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Bozzelli, L., Sánchez, C.: Visibly rational expressions. In: Proc. FSTTCS. LIPIcs, vol. 18, pp. 211–223 (2012)

    Google Scholar 

  13. Dax, C., Klaedtke, F.: Alternation elimination for automata over nested words. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 168–183. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Kupferman, O., Vardi, M., Wolper, P.: An Automata-Theoretic Approach to Branching-Time Model Checking. J. ACM 47(2), 312–360 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Transactions on Computational Logic 2(3), 408–429 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Leucker, M., Sánchez, C.: Regular linear temporal logic. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 291–305. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Löding, C., Serre, O.: Propositional dynamic logic with recursive programs. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 292–306. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Madhusudan, P., Viswanathan, M.: Query automata for nested words. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 561–573. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoretical Computer Science 32, 321–330 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sánchez, C., Leucker, M.: Regular linear temporal logic with past. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 295–311. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Sánchez, C., Samborski-Forlese, J.: Efficient regular linear temporal logic using dualization and stratification. In: Proc. 19th TIME, pp. 13–20 (2012)

    Google Scholar 

  22. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Preliminary report. In: Proc. 5th STOC, pp. 1–9. ACM (1973)

    Google Scholar 

  23. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computation 115, 1–37 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoretical Computer Science 200(1-2), 135–183 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bozzelli, L., Sánchez, C. (2014). Visibly Linear Temporal Logic. In: Demri, S., Kapur, D., Weidenbach, C. (eds) Automated Reasoning. IJCAR 2014. Lecture Notes in Computer Science(), vol 8562. Springer, Cham. https://doi.org/10.1007/978-3-319-08587-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08587-6_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08586-9

  • Online ISBN: 978-3-319-08587-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics