Advertisement

Visibly Linear Temporal Logic

  • Laura Bozzelli
  • César Sánchez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8562)

Abstract

We introduce a robust and tractable temporal logic, we call Visibly Linear Temporal Logic (VLTL), which captures the full class of Visibly Pushdown Languages. The novel logic avoids fix points and provides instead natural temporal operators with simple and intuitive semantics. We prove that the complexities of the satisfiability and visibly pushdown model checking problems are the same as for other well known logics, like CaReT and the nested word temporal logic NWTL, which in contrast are strictly more limited in expressive power than VLTL. Moreover, formulas of CaReT and NWTL can be easily and inductively translated in linear-time into VLTL.

Keywords

Model Check Temporal Logic Regular Expression Main State Linear Temporal Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IEEE Standard for Property Specification Language (PSL). IEEE Standard 1850–2010 (April 2010)Google Scholar
  2. 2.
    Alur, R.: Marrying words and trees. In: Proc. 26th PODS, pp. 233–242. ACM (2007)Google Scholar
  3. 3.
    Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L.: First-order and temporal logics for nested words. In: Proc. 22nd LICS, pp. 151–160. IEEE Computer Society (2007)Google Scholar
  4. 4.
    Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 467–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. 36th STOC, pp. 202–211. ACM (2004)Google Scholar
  6. 6.
    Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3) (2009)Google Scholar
  7. 7.
    Arenas, M., Barceló, P., Libkin, L.: Regular languages of nested words: Fixed points, automata, and synchronization. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 888–900. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A., Mador-Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The ForSpec temporal logic: A new temporal property-specification language. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 296–311. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Ball, T., Rajamani, S.K.: Bebop: a symbolic model checker for boolean programs. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 113–130. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Bollig, B., Cyriac, A., Gastin, P., Zeitoun, M.: Temporal logics for concurrent recursive programs: Satisfiability and model checking. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 132–144. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Bozzelli, L.: Alternating automata and a temporal fixpoint calculus for visibly pushdown languages. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 476–491. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Bozzelli, L., Sánchez, C.: Visibly rational expressions. In: Proc. FSTTCS. LIPIcs, vol. 18, pp. 211–223 (2012)Google Scholar
  13. 13.
    Dax, C., Klaedtke, F.: Alternation elimination for automata over nested words. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 168–183. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Kupferman, O., Vardi, M., Wolper, P.: An Automata-Theoretic Approach to Branching-Time Model Checking. J. ACM 47(2), 312–360 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Transactions on Computational Logic 2(3), 408–429 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Leucker, M., Sánchez, C.: Regular linear temporal logic. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 291–305. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Löding, C., Serre, O.: Propositional dynamic logic with recursive programs. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 292–306. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Madhusudan, P., Viswanathan, M.: Query automata for nested words. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 561–573. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoretical Computer Science 32, 321–330 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Sánchez, C., Leucker, M.: Regular linear temporal logic with past. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 295–311. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Sánchez, C., Samborski-Forlese, J.: Efficient regular linear temporal logic using dualization and stratification. In: Proc. 19th TIME, pp. 13–20 (2012)Google Scholar
  22. 22.
    Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Preliminary report. In: Proc. 5th STOC, pp. 1–9. ACM (1973)Google Scholar
  23. 23.
    Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computation 115, 1–37 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoretical Computer Science 200(1-2), 135–183 (1998)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Laura Bozzelli
    • 1
  • César Sánchez
    • 2
    • 3
  1. 1.Technical University of Madrid (UPM)MadridSpain
  2. 2.IMDEA Software InstituteMadridSpain
  3. 3.Institute for Information SecurityCSICSpain

Personalised recommendations