Cool – A Generic Reasoner for Coalgebraic Hybrid Logics (System Description)

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8562)


We describe the Coalgebraic Ontology Logic solver Cool, a generic reasoner that decides the satisfiability of modal (and, more generally, hybrid) formulas with respect to a set of global assumptions – in Description Logic parlance, we support a general TBox and internalize a Boolean ABox. The level of generality is that of coalgebraic logic, a logical framework covering a wide range of modal logics, beyond relational semantics. The core of Cool is an efficient unlabelled tableaux search procedure using global caching. Concrete logics are added by implemening the corresponding (one-step) tableaux rules. The logics covered at the moment include standard relational examples as well as graded modal logic and Pauly’s Coalition Logic (the next-step fragment of Alternating-time Temporal Logic), plus every logic that arises as a fusion of the above. We compare the performance of Cool with state-of-the-art reasoners.


Modal Logic Description Logic Generic Reasoner Hybrid Logic Reasoning Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49, 672–713 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, pp. 821–868. Elsevier (2007)Google Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook. Cambridge University Press (2003)Google Scholar
  4. 4.
    Calin, G., Myers, R., Pattinson, D., Schröder, L.: Coloss: The coalgebraic logic satisfiability solver. In: Methods for Modalities, M4M-5. ENTCS, vol. 231, pp. 41–54. Elsevier (2009)Google Scholar
  5. 5.
    Chellas, B.: Modal Logic. Cambridge University Press (1980)Google Scholar
  6. 6.
    Cîrstea, C., Kupke, C., Pattinson, D.: EXPTIME tableaux for the coalgebraic μ-calculus. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 179–193. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    D’Agostino, G., Visser, A.: Finality regained: A coalgebraic study of Scott-sets and multisets. Arch. Math. Logic 41, 267–298 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    David, A.: TATL: Implementation of ATL tableau-based decision procedure. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS, vol. 8123, pp. 97–103. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Fagin, R., Halpern, J.Y.: Reasoning about knowledge and probability. J. ACM 41, 340–367 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Fine, K.: In so many possible worlds. Notre Dame J. Formal Logic 13, 516–520 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Goré, R., Kupke, C., Pattinson, D.: Optimal tableau algorithms for coalgebraic logics. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 114–128. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Goré, R., Kupke, C., Pattinson, D., Schröder, L.: Global caching for coalgebraic description logics. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 46–60. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Goré, R., Nguyen, L.: EXPTIME tableaux for \(\mathcal{ALC}\) using sound global caching. In: Description Logics, DL 2007. CEUR Workshop Proceedings, vol. 250 (2007)Google Scholar
  15. 15.
    Goré, R.P., Postniece, L.: An experimental evaluation of global caching for \(\mathcal{ALC}\) (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 299–305. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Hansson, H., Jonsson, B.: A calculus for communicating systems with time and probabilities. In: Real-Time Systems, RTSS 1990, pp. 278–287. IEEE Computer Society (1990)Google Scholar
  17. 17.
    Pattinson, D.: Coalgebraic modal logic: Soundness, completeness and decidability of local consequence. Theoret. Comput. Sci. 309, 177–193 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Pauly, M.: A modal logic for coalitional power in games. J. Log. Comput. 12, 149–166 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Schröder, L., Pattinson, D.: PSPACE bounds for rank-1 modal logics. ACM Trans. Comput. Log. 13, 1–13 (2009)CrossRefGoogle Scholar
  20. 20.
    Segala, R.: Modelling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, Massachusetts Institute of Technology (1995)Google Scholar
  21. 21.
    Snell, W., Pattinson, D., Widmann, F.: Solving graded/probabilistic modal logic via linear inequalities (system description). In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 383–390. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Friedrich-Alexander-Universität Erlangen-NürnbergGermany
  2. 2.The Australian National UniversityCanberraAustralia
  3. 3.Imperial College LondonUK

Personalised recommendations