And-Or Tableaux for Fixpoint Logics with Converse: LTL, CTL, PDL and CPDL

  • Rajeev Goré
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8562)


Over the last forty years, computer scientists have invented or borrowed numerous logics for reasoning about digital systems. Here, I would like to concentrate on three of them: Linear Time Temporal Logic (LTL), branching time Computation Tree temporal Logic (CTL), and Propositional Dynamic Logic (PDL), with and without converse. More specifically, I would like to present results and techniques on how to solve the satisfiability problem in these logics, with global assumptions, using the tableau method. The issues that arise are the typical tensions between computational complexity, practicality and scalability. This is joint work with Linh Anh Nguyen, Pietro Abate, Linda Postniece, Florian Widmann and Jimmy Thomson.


Description Logic Computation Tree Logic Linear Time Temporal Logic Propositional Dynamic Logic Negation Normal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vardi, M.Y.: From philosophical to industrial logics. In: Ramanujam, R., Sarukkai, S. (eds.) Logic and Its Applications. LNCS (LNAI), vol. 5378, pp. 89–115. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Goré, R., Nguyen, L.A.: EXPTIME tableaux for ALC using sound global caching. In: Proc. of the International Workshop on Description Logics, DL 2007 (2007)Google Scholar
  3. 3.
    Goré, R.P., Nguyen, L.A.: EXPTIME tableaux with global caching for description logics with transitive roles, inverse roles and role hierarchies. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 133–148. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Goré, R.P., Postniece, L.: An experimental evaluation of global caching for ALC (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 299–305. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Goré, R., Widmann, F.: Sound global state caching for ALC with inverse roles. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 205–219. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Goré, R., Widmann, F.: An optimal on-the-fly tableau-based decision procedure for PDL-satisfiability. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 437–452. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Goré, R., Widmann, F.: Optimal and cut-free tableaux for propositional dynamic logic with converse. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 225–239. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Widmann, F.: Tableaux-based Decision Procedures for Fixpoint Logics. PhD thesis, The Australian National University, Australia (2010)Google Scholar
  9. 9.
    Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 297–396. Kluwer (1999)Google Scholar
  10. 10.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)Google Scholar
  11. 11.
    Pratt, V.R.: A near-optimal method for reasoning about action. Journal of Computer and System Sciences 20(2), 231–254 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Journal of Computer and Systems Science 18, 194–211 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Beth, E.: On Padoa’s method in the theory of definition. Indag. Math. 15, 330–339 (1953)MathSciNetGoogle Scholar
  14. 14.
    Goré, R., Nguyen, L.: ExpTime tableaux for \(\mathcal{ALC}\) using sound global caching. In: C., D., et al. (eds.) Proc. DL 2007, pp. 299–306 (2007)Google Scholar
  15. 15.
    Wolper, P.: Temporal logic can be more expressive. Information and Control 56, 72–99 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Ben-Ari, M., Manna, Z., Pnueli, A.: The temporal logic of branching time. In: Proceedings of Principle of Programming Langauages (1981)Google Scholar
  17. 17.
    Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the temporal logic of branching time. Journal of Computer and System Sciences 30(1), 1–24 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Horrocks, I., Sattler, U.: A tableaux decision procedure for SHOIQ. In: IJCAI, pp. 448–453 (2005)Google Scholar
  19. 19.
    Kesten, Y., Manna, Z., McGuire, H., Pnueli, A.: A decision algorithm for full propositional temporal logic. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 97–109. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  20. 20.
    Schwendimann, S.: A new one-pass tableau calculus for PLTL. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 277–291. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. 21.
    Janssen, G.: Logics for Digital Circuit Verication: Theory, Algorithms, and Applications. PhD thesis, Eindhoven University of Technology, The Netherlands (1999)Google Scholar
  22. 22.
    Hustadt, U., Konev, B.: TRP++: A temporal resolution prover. In: Baaz, M., Makowsky, J., Voronkov, A. (eds.) Collegium Logicum, pp. 65–79. Kurt Gödel Society (2004)Google Scholar
  23. 23.
    Baader, F.: Augmenting concept languages by transitive closure of roles: An alternative to terminological cycles. In: Proc. IJCAI 1991, pp. 446–451 (1991)Google Scholar
  24. 24.
    Abate, P., Goré, R., Widmann, F.: One-pass tableaux for computation tree logic. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 32–46. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Schuppan, V., Darmawan, L.: Evaluating LTL satisfiability solvers. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 397–413. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Abate, P., Goré, R., Widmann, F.: Cut-free single-pass tableaux for the logic of common knowledge. In: Workshop on Agents and Deduction at TABLEAUX (2007)Google Scholar
  27. 27.
    Nguyen, L.A., Golinska-Pilarek, J.: An exptime tableau method for dealing with nominals and quantified number restrictions in deciding the description logic SHOQ. In: CS&P, pp. 296–308 (2013)Google Scholar
  28. 28.
    Nguyen, L.A.: A tableau method with optimal complexity for deciding the description logic SHIQ. In: Nguyen, N.T., van Do, T., Thi, H.A. (eds.) ICCSAMA 2013. SCI, vol. 479, pp. 331–342. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  29. 29.
    Suda, M., Weidenbach, C.: A pltl-prover based on labelled superposition with partial model guidance. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 537–543. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Jungteerapanich, N.: A tableau system for the modal μ-calculus. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 220–234. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  31. 31.
    Friedmann, O., Latte, M., Lange, M.: A decision procedure for CTL* based on tableaux and automata. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 331–345. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  32. 32.
    Friedmann, O., Lange, M.: A solver for modal fixpoint logics. Electr. Notes Theor. Comput. Sci. 262, 99–111 (2010)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Reynolds, M.: A faster tableau for CTL*. In: GandALF, pp. 50–63 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rajeev Goré
    • 1
  1. 1.Logic and Computation Group, Research School of Computer ScienceThe Australian National UniversityCanberraAustralia

Personalised recommendations