Advertisement

A Tool That Incrementally Approximates Finite Satisfiability in Full Interval Temporal Logic

  • Rüdiger Ehlers
  • Martin Lange
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8562)

Abstract

Interval Temporal Logic (ITL) is a powerful formalism to reason about sequences of events that can occur simultaneously and in an overlapping fashion. Despite its importance for various application domains, little tool support for automated ITL reasoning is available, possibly also owed to ITL’s undecidability.

We consider bounded satisfiability which approximates finite satisfiability and is only NP-complete. We provide an encoding into SAT that is designed to use the power of modern incremental SAT solvers. We present a tool that tests an ITL specification for finite satisfiability.

Keywords

Modal Logic Temporary Constraint Critical Section Mutual Exclusion Atomic Proposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)CrossRefzbMATHGoogle Scholar
  2. 2.
    Axelsson, R., Heljanko, K., Lange, M.: Analyzing context-free grammars using an incremental SAT solver. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 410–422. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Biere, A.: Picosat essentials. JSAT 4(2-4), 75–97 (2008)zbMATHGoogle Scholar
  4. 4.
    Bresolin, D., Jiménez, F., Sánchez, G., Sciavicco, G.: Finite satisfiability of propositional interval logic formulas with multi-objective evolutionary algorithms. In: FOGA 2013, pp. 25–36. ACM (2013)Google Scholar
  5. 5.
    Bresolin, D., Della Monica, D., Montanari, A., Sciavicco, G.: A tableau system for right propositional neighborhood logic over finite linear orders: An implementation. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS, vol. 8123, pp. 74–80. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Information Processing Letters 40(5), 269–276 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Methods in System Design 19(1), 7–34 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. In: LICS 1986, pp. 279–292. IEEE (1986)Google Scholar
  10. 10.
    Hodkinson, I.M., Montanari, A., Sciavicco, G.: Non-finite axiomatizability and undecidability of interval temporal logics with C, D, and T. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 308–322. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Expressiveness of the interval logics of allen’s relations on the class of all linear orders: Complete classification. In: IJCAI 2011, pp. 845–850. AAAI (2011)Google Scholar
  12. 12.
    Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Interval temporal logics: a journey. Bulletin of the EATCS 105 (2011)Google Scholar
  13. 13.
    Moszkowski, B.: Reasoning about digital circuits. Ph.D. thesis, Stanford Univ (1983)Google Scholar
  14. 14.
    Peterson, G.L., Fischer, M.J.: Economical solutions to the critical section problem in a distributed system. In: STOC 1977, pp. 91–97. ACM (1977)Google Scholar
  15. 15.
    Venema, Y.: A modal logic for chopping intervals. Journal of Logic and Computation 1(4), 453–476 (1991)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rüdiger Ehlers
    • 1
    • 2
  • Martin Lange
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceUniversity of KasselGermany
  2. 2.University of Bremen and DFKI GmbHBremenGermany

Personalised recommendations