MleanCoP: A Connection Prover for First-Order Modal Logic

  • Jens Otten
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8562)


MleanCoP is a fully automated theorem prover for first-order modal logic. The proof search is based on a prefixed connection calculus and an additional prefix unification, which captures the Kripke semantics of different modal logics. MleanCoP is implemented in Prolog and the source code of the core proof search procedure consists only of a few lines. It supports the standard modal logics D, T, S4, and S5 with constant, cumulative, and varying domain conditions. The most recent version also supports heterogeneous multimodal logics and outputs a compact prefixed connection proof. An experimental evaluation shows the strong performance of MleanCoP.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beckert, B., Goré, R.: Free Variable Tableaux for Propositional Modal Logics. In: Galmiche, D. (ed.) TABLEAUX 1997. LNCS (LNAI), vol. 1227, pp. 91–106. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Benzmüller, C., Otten, J., Raths, T.: Implementing and Evaluating Provers for First-order Modal Logics. In: De Raedt, L., et al. (eds.) 20th European Conference on Artificial Intelligence, ECAI 2012, pp. 163–168. IOS Press, Amsterdam (2012)Google Scholar
  3. 3.
    Benzmüller, C., Raths, T.: HOL Based First-Order Modal Logic Provers. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 127–136. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Bibel, W.: Automated Theorem Proving. Vieweg, Wiesbaden (1987)CrossRefzbMATHGoogle Scholar
  5. 5.
    Blackburn, P., van Bentham, J., Wolter, F.: Handbook of Modal Logic. Elsevier, Amsterdam (2006)Google Scholar
  6. 6.
    Brown, C.: Reducing Higher-Order Theorem Proving to a Sequence of SAT Problems. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 147–161. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Carnielli, W., Pizzi, C.: Modalities and Multimodalities. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Kluwer, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hustadt, U., Schmidt, R.: MSPASS: Modal Reasoning by Translation and First-Order Resolution. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 67–81. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Otten, J.: leanCop 2.0 and ileanCop 1.2: High Performance Lean Theorem Proving in Classical and Intuitionistic Logic. In: Armando, A., Baumgartner, P., Dowek, G., et al. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 283–291. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Otten, J.: Restricting backtracking in connection calculi. AI Communications 23, 159–182 (2010)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Otten, J.: A Non-clausal Connection Calculus. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 226–241. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Otten, J.: Implementing Connection Calculi for First-order Modal Logics. In: Korovin, K., et al. (eds.) IWIL 2012. EPiC, vol. 22, pp. 18–32. EasyChair (2012)Google Scholar
  14. 14.
    Raths, T., Otten, J.: The QMLTP Problem Library for First-order Modal Logics. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 454–461. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Wallen, L.A.: Automated Deduction in Nonclassical Logics. MIT Press, Cambridge (1990)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jens Otten
    • 1
  1. 1.Institut für InformatikUniversity of PotsdamPotsdam-BabelsbergGermany

Personalised recommendations