Locality Transfer: From Constrained Axiomatizations to Reachability Predicates

  • Matthias Horbach
  • Viorica Sofronie-Stokkermans
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8562)


In this paper, we build upon our previous work in which we used constrained clauses in order to finitely represent infinite sets of clauses and proved that constrained axiomatizations are local if they are saturated under a version of resolution. We extend this result by identifying situations in which locality of saturated axiomatizations is maintained if we enrich the base theory by introducing new predicates (often reachability predicates) instead of using constraints for these properties.


Transitive Closure Predicate Symbol Horn Clause Ground Term Ground Instance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. of Logic and Computation 4(3), 217–247 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Basin, D., Ganzinger, H.: Complexity analysis based on ordered resolution. In: Proc. LICS 1996, pp. 456–465. IEEE Computer Society Press (1996)Google Scholar
  3. 3.
    Basin, D., Ganzinger, H.: Automated complexity analysis based on ordered resolution. Journal of the ACM 48(1), 70–109 (2001)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Ganzinger, H.: Relating semantic and proof-theoretic concepts for polynomial time decidability of uniform word problems. In: Proc. LICS 2001, pp. 81–92. IEEE Computer Society Press (2001)Google Scholar
  5. 5.
    Givan, R., McAllester, D.: New results on local inference relations. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference (KR 1992), pp. 403–412. Morgan Kaufmann Press (1992)Google Scholar
  6. 6.
    Horbach, M., Sofronie-Stokkermans, V.: Obtaining finite local theory axiomatizations via saturation. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 198–213. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Horbach, M., Weidenbach, C.: Deciding the inductive validity of ∀ ∃ * queries. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 332–347. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Horbach, M., Weidenbach, C.: Superposition for Fixed Domains. ACM Transactions on Computational Logic 11(4), 27:1–27:35 (2010)Google Scholar
  9. 9.
    Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verification. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 265–281. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Ihlemann, C., Sofronie-Stokkermans, V.: On hierarchical reasoning in combinations of theories. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 30–45. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Lev-Ami, T., Immerman, N., Reps, T.W., Sagiv, M., Srivastava, S., Yorsh, G.: Simulating reachability using first-order logic with applications to verification of linked data structures. Logical Methods in Computer Science 5(2) (2009)Google Scholar
  12. 12.
    Klaessen, K.: Expressing transitive closure for finite domains in pure first-order logic. Unpublished manuscriptGoogle Scholar
  13. 13.
    Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 219–234. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Sofronie-Stokkermans, V.: Locality results for certain extensions of theories with bridging functions. In: Schmidt, R.A. (ed.) CADE-22. LNCS (LNAI), vol. 5663, pp. 67–83. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Wies, T., Muñiz, M., Kuncak, V.: An efficient decision procedure for imperative tree data structures. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 476–491. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Wies, T., Muñiz, M., Kuncak, V.: Deciding functional lists with sublist sets. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 66–81. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Matthias Horbach
    • 1
    • 2
  • Viorica Sofronie-Stokkermans
    • 1
    • 2
  1. 1.University Koblenz-LandauKoblenzGermany
  2. 2.Max-Planck-Institut für Informatik SaarbrückenGermany

Personalised recommendations