Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 522 Accesses

Abstract

From the spectroscopic data accumulated in this work, it is possible to extract important properties of the popular materials polyethylene and polytetrafluoroethylene, namely a limiting value for their elastic moduli or Young moduli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To set these quantities in relation, one can think of \(1\,\mathrm{{kg}}\) pulling on a \(1\, \mathrm{{cm}}\times 1\,\mathrm{{cm}}\times 10\,\mathrm{{cm}}\) rectangular rod on the surface of earth with a weight force of \(\approx \) \( 10\, \mathrm{{N}}\), which results in an elongation by \(\approx \) \(0.01\,\mathrm{{mm}}\) for \(E=1\,\mathrm{{GPa}}\). About \( 200\,\mathrm{{kg}}\) would be needed to elongate a steel-rod by \( 0.01\,\mathrm{{mm}}\), or \( 70\,\mathrm{{kg}}\) in case of an aluminum-rod.

  2. 2.

    The quantum chemical separation is obtained from the slope of a plot of the chain length versus the end-to-end distance, as depicted in Appendix A.7, Figs. A.12 and A.13.

  3. 3.

    Calculated using Eq. 6.3 with \(M(\mathrm{{CF}}_2)=50.0\,\mathrm{{g\,mol}}^{-1}\).

  4. 4.

    \(k = \mu \,(2\,\pi \,c\,\tilde{\nu })^2\); \(f\approx k \times 0.153\,\mathrm{{pm}}\times 1{\,\%}\).

References

  1. A.L. Brower, J.R. Sabin, B. Crist, M.A. Ratner, Ab initio molecular orbital studies of polyethylene deformation. Int. J. Quantum Chem. 18, 651–654 (1980)

    Article  CAS  Google Scholar 

  2. A. Karpfen, Ab initio studies on polymers. V. All-trans-polyethylene. J. Chem. Phys. 75, 238–245 (1981)

    CAS  Google Scholar 

  3. S. Suhai, Ab initio calculation of polyethylene deformation including electron correlation effects. J. Polym. Sci. Polym. Phys. Ed. 21, 1341–1346 (1983)

    CAS  Google Scholar 

  4. D.J. Lacks, G.C. Rutledge, Simulation of the temperature dependence of mechanical properties of polyethylene. J. Phys. Chem. 98, 1222–1231 (1994)

    CAS  Google Scholar 

  5. J.C.L. Hageman, R.J. Meier, M. Heinemann, R.A. de Groot, Young modulus of crystalline polyethylene from ab initio molecular dynamics. Macromolecules 30, 5953–5957 (1997)

    Article  CAS  Google Scholar 

  6. G.D. Barrera, S.F. Parker, A.J. Ramirez-Cuesta, P.C.H. Mitchell, The vibrational spectrum and ultimate modulus of polyethylene. Macromolecules 39, 2683–2690 (2006)

    Article  CAS  Google Scholar 

  7. I. Sakurada, T. Ito, K. Nakamae, Elastic moduli of the crystal lattices of polymers. J. Polym. Sci. Part C Polym. Symp. 15, 75–91 (1967)

    Article  Google Scholar 

  8. P.J. Barham, A. Keller, The achievement of high-modulus polyethylene fibers and the modulus of polyethylene crystals. J. Polym. Sci. Polym. Lett. Ed. 17, 591–593 (1979)

    Article  CAS  Google Scholar 

  9. R.F. Schaufele, T. Shimanouchi, Longitudinal acoustical vibrations of finite polymethylene chains. J. Chem. Phys. 47, 3605–3610 (1967)

    CAS  Google Scholar 

  10. G.R. Strobl, R. Eckel, A Raman spectroscopic determination of the interlamellar forces in crystalline \(n\)-alkanes and of the limiting elastic modulus \(E_c\) of polyethylene. J. Polym. Sci. Polym. Phys. Ed. 14, 913–920 (1976)

    CAS  Google Scholar 

  11. R.G. Snyder, H.L. Strauss, R. Alamo, L. Mandelkern, Chain-length dependence of interlayer interaction in crystalline \(n\)-alkanes from Raman longitudinal acoustic mode measurements. J. Chem. Phys. 100, 5422–5431 (1994)

    CAS  Google Scholar 

  12. T. Shimanouchi, M. Asahina, S. Enomoto, Elastic moduli of oriented polymers. I. The simple helix, polyethylene, polytetrafluoroethylene, and a general formula. J. Polym. Sci. 59, 93–100 (1962)

    Article  CAS  Google Scholar 

  13. F. Bartha, F. Bogár, A. Peeters, C. Van Alsenoy, V. Van Doren, Density-functional calculations of the elastic properties of some polymer chains. Phys. Rev. B Condens. Matter Mater. Phys. 62, 10142–10150 (2000)

    Google Scholar 

  14. M.-L. Zhang, M.S. Miao, A. Peeters, C.V. Alsenoy, J.J. Ladik, V.E. Van Doren, LDA calculations of the Young’s moduli of polyethylene and six polyfluoroethylenes. Solid State Commun. 116, 339–343 (2000)

    Article  CAS  Google Scholar 

  15. I. Sakurada, K. Kaji, Relation between the polymer conformation and the elastic modulus of the crystalline region of polymer. J. Polym. Sci. Part C Polym. Symp. 31, 57–76 (1970)

    Article  Google Scholar 

  16. E.N. Brown, P.J. Rae, D.M. Dattelbaum, B. Clausen, D.W. Brown, In-situ measurement of crystalline lattice strains in polytetrafluoroethylene. Exp. Mech. 48, 119–131 (2008)

    Article  CAS  Google Scholar 

  17. J.F. Rabolt, B. Fanconi, Longitudinal acoustic modes of polytetrafluoroethylene copolymers and oligomers. Polymer 18, 1258–1264 (1977)

    Article  CAS  Google Scholar 

  18. T.N. Wassermann, J. Thelemann, P. Zielke, M.A. Suhm, The stiffness of a fully stretched polyethylene chain: a Raman jet spectroscopy extrapolation. J. Chem. Phys. 131, 161108 (2009)

    Google Scholar 

  19. CRC Handbook of Chemistry and Physics, ed. by D.R. Lide, 82nd edn, (CRC Press, Boca Raton, 2001)

    Google Scholar 

  20. T. Shimanouchi, Local and overall vibrations of polymer chains. Pure Appl. Chem. 36, 93–108 (1973)

    Article  CAS  Google Scholar 

  21. C.W. Bunn, The crystal structure of long-chain normal paraffin hydrocarbons. The “shape” of the \({\rm {CH}}_2\) group. Trans. Faraday Soc. 35, 482–491 (1939)

    Google Scholar 

  22. C.W. Bunn, E.R. Howells, Structures of molecules and crystals of fluoro-carbons. Nature 174, 549–551 (1954)

    Article  CAS  Google Scholar 

  23. E. Clark, The molecular conformations of polytetrafluoroethylene: forms II and IV. Polymer 40, 4659–4665 (1999)

    Article  CAS  Google Scholar 

  24. S.-I. Mizushima, T. Simanouti, Raman frequencies of \(n\)-paraffin molecules. J. Am. Chem. Soc. 71, 1320–1324 (1949)

    Article  CAS  Google Scholar 

  25. V. LaGarde, H. Prask, S. Trevino, Vibrations in teflon. Discuss. Faraday Soc. 48, 15–18 (1969)

    Article  Google Scholar 

  26. TURBOMOLE v6.4 2012, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com

  27. G. Herzberg, Molecular Spectra and Molecular Structure: Infrared and Raman spectra of polyatomic molecules, vol. II (R. E. Krieger Pub. Co., New York, 1991)

    Google Scholar 

  28. S.J. Daunt, H. Shurvell, The gas phase infrared band contours of s-triazine and s-triazine-\(d_3\): The fundamentals of C\(_3\)N\(_3\)H\(_3\) and C\(_3\)N\(_3\)D\(_3\) and some overtone and combination bands of C\(_3\)N\(_3\)H\(_3\). J. Mol. Spectro. 62, 373–395 (1976)

    Article  CAS  Google Scholar 

  29. J. Thelemann, Accordion Vibrations of Linear Alkanes, B.Sc. Thesis, Georg-August-Universität Göttingen, 2009

    Google Scholar 

  30. T.N. Wassermann, Umgebungseinflüsse auf die C-C- und C-O-Torsionsdynamik in Molekülen und Molekülaggregaten: Schwingungsspektroskopie bei tiefen Temperaturen, Ph.D. Thesis, Georg-August-Universität Göttingen, 2009

    Google Scholar 

  31. M. Tasumi, T. Shimanouchi, T. Miyazawa, Normal vibrations and force constants of polymethylene chain. J. Mol. Spectro. 9, 261–287 (1962)

    Article  CAS  Google Scholar 

  32. R.R. Laher, F.R. Gilmore, Improved fits for the vibrational and rotational constants of many states of nitrogen and oxygen. J. Phys. Chem. Ref. Data 20, 685–712 (1991)

    Article  CAS  Google Scholar 

  33. I.M. Grigoriev, A.V. Domanskaya, A.V. Podzorov, M.V. Tonkov, Intra- and intermolecular components of the \(\nu _2\) forbidden band of CF\(_4\) in pure gas and in He, Ar, Xe and N\(_2\) mixtures. Mol. Phys. 102, 1851–1857 (2004)

    Article  CAS  Google Scholar 

  34. V. Boudon, J. Mitchell, A. Domanskaya, C. Maul, R. Georges, A. Benidar, W.G. Harter, High-resolution spectroscopy and analysis of the \(\nu _3/2\nu _4\) dyad of CF\(_4\). Mol. Phys. 109, 2273–2290 (2011)

    Article  CAS  Google Scholar 

  35. P. Drawe, Mechanical properties of chain molecules from spectroscopic data, B.Sc. Thesis, Georg-August-Universität Göttingen, 2010

    Google Scholar 

  36. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D. K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M. A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision B.04, Gaussian Inc, Wallingford, CT (2004)

    Google Scholar 

  37. T. Shimanouchi, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, ed. by P.J. Linstrom, W.G. Mallard (National Institute of Standards and Technology, Gaithersburg MD, 20899, 2013), Chap. Molecular Vibrational Frequencies

    Google Scholar 

  38. I. Sakurada, K. Kaji, S. Wadano, Elastic moduli and structure of low density polyethylene. Colloid Polym. Sci. 259, 1208–1213 (1981)

    Article  CAS  Google Scholar 

  39. P.J. Barham, A. Keller, High-strength polyethylene fibres from solution and gel spinning. J. Mater. Sci. 20, 2281–2302 (1985)

    Article  CAS  Google Scholar 

  40. A. Peterlin, Drawing and extrusion of semi-crystalline polymers. Colloid Polym. Sci. 265, 357–382 (1987)

    Article  CAS  Google Scholar 

  41. B. Fanconi, J.F. Rabolt, The determination of longitudinal crystal moduli in polymers by spectroscopic methods. J. Polym. Sci. Polym. Phys. Ed. 23, 1201–1215 (1985)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Olaf Bernd Lüttschwager .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lüttschwager, N.O.B. (2014). Modulus of Elasticity. In: Raman Spectroscopy of Conformational Rearrangements at Low Temperatures. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-08566-1_6

Download citation

Publish with us

Policies and ethics