Advertisement

Non-rigid Groupwise Image Registration for Motion Compensation in Quantitative MRI

  • Wyke Huizinga
  • Dirk H. J. Poot
  • Jean-Marie Guyader
  • Henk Smit
  • Matthijs van Kranenburg
  • Robert-Jan M. van Geuns
  • André Uitterdijk
  • Heleen M. M. van Beusekom
  • Bram F. Coolen
  • Alexander Leemans
  • Wiro J. Niessen
  • Stefan Klein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8545)

Abstract

Quantitative magnetic resonance imaging (qMRI) aims to extract quantitative parameters representing tissue properties from a series of images by modeling the image acquisition process. This requires the images to be spatially aligned but, due to patient motion, anatomical structures in the consecutive images may be misaligned. In this work, we propose a groupwise non-rigid image registration method for motion compensation in qMRI. The method minimizes a dissimilarity measure based on principal component analysis (PCA), exploiting the fact that intensity changes can be described by a low-dimensional acquisition model. Using an unbiased groupwise formulation of the registration problem, there is no need to choose a reference image as in conventional pairwise approaches. The method was evaluated on three applications: modified Look-Locker inversion recovery T 1 mapping in a porcine myocardium, black-blood variable flip-angle T 1 mapping in the carotid artery region, and apparent diffusion coefficient (ADC) mapping in the abdomen. The method was compared to a conventional pairwise alignment that uses a mutual information similarity measure. Registration accuracy was evaluated by computing precision of the estimated parameters of the qMRI model. The results show that the proposed method performs equally well or better than an optimized pairwise approach and is therefore a suitable motion compensation method for a wide variety of qMRI applications.

Keywords

groupwise image registration quantitative MRI motion compensation T1 mapping ADC mapping principal component analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tofts, P.: Quantitative MRI of the Brain: Measuring Changes Caused by Disease. John Wiley & Sons (2003)Google Scholar
  2. 2.
    Mangin, J.F., et al.: Distortion correction and robust tensor estimation for MR diffusion imaging. Med. Image Anal. 6, 191–198 (2002)CrossRefGoogle Scholar
  3. 3.
    Bron, E., et al.: Image registration improves human knee cartilage T1 mapping with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). Eur. Radiol. 23, 246–252 (2013)CrossRefGoogle Scholar
  4. 4.
    Metz, C.T., et al.: Nonrigid registration of dynamic medical imaging data using nD+t B-splines and a groupwise optimization approach. Med. Image Anal. 15, 238–249 (2010)CrossRefGoogle Scholar
  5. 5.
    Marsland, S., et al.: A minimum description length objective function for groupwise non-rigid image registration. Image Vis. Comput. 26, 333–346 (2008)CrossRefGoogle Scholar
  6. 6.
    Wachinger, C., et al.: Simultaneous registration of multiple images: Similarity metrics and efficient optimization. IEEE Trans. Pattern Anal. Mach. Intell. 7, 667–674 (2012)Google Scholar
  7. 7.
    Huizinga, W., et al.: Groupwise registration in diffusion weighted MRI for correcting subject motion and eddy current distortions using a PCA based dissimilarity metric. In: Computational Diffusion MRI and Brain Connectivity - MICCAI Workshops, pp. 163–174 (2013)Google Scholar
  8. 8.
    Miller, E., et al.: Learning from one example through shared densities on transforms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 464–471 (2000)Google Scholar
  9. 9.
    Hamy, V., et al.: Respiratory motion correction in dynamic MRI using robust data decomposition registration - Application to DCE-MRI. Med. Image Anal. 18, 301–313 (2013)CrossRefGoogle Scholar
  10. 10.
    Rueckert, D., et al.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Med. Imag. 18, 712–721 (1999)CrossRefGoogle Scholar
  11. 11.
    Messroghli, D.R., et al.: Modified Look-Locker Inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn. Reson. Med. 52, 141–146 (2004)CrossRefGoogle Scholar
  12. 12.
    Coolen, B.F., et al.: 3D carotid wall T1 quantification using variable flip angle 3D merge with steady-state recovery. In: Proc. Annu. Meet. ISMRM (2013)Google Scholar
  13. 13.
    Klein, S., et al.: Adaptive stochastic gradient descent optimization for image registration. Int. J. Comput. Vis. 81, 227–239 (2009)CrossRefGoogle Scholar
  14. 14.
    Klein, S., et al.: Elastix: a toolbox for intensity based medical image registration. IEEE Trans. Med. Imag. 29, 196–205 (2010)CrossRefGoogle Scholar
  15. 15.
    Balci, S., et al.: Free-form B-spline deformation model for groupwise registration. In: Proc. Stat. Regis. Workshop - MICCAI, pp. 23–30 (2007)Google Scholar
  16. 16.
    Guyader, J.M., Bernardin, L., Douglas, N., Poot, D., Niessen, W., Klein, S.: Influence of image registration on adc images computed from free-breathing diffusion mris of the abdomen. In: SPIE Medical Imaging (2014)Google Scholar
  17. 17.
    Sijbers, J., et al.: Parameter estimation from magnitude MR images. Int. J. Imag. Syst. Tech. 10, 109–114 (1999)CrossRefGoogle Scholar
  18. 18.
    Cavassila, et al.: Cramér-Rao bounds: an evaluation tool for quantitation. NMR Biomed. 14, 278–283 (2001)CrossRefGoogle Scholar
  19. 19.
    Rao, C.R.: Minimum variance and the estimation of several parameters. Proc. Cambridge Phil. Soc. 43, 280–283 (1946)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Wyke Huizinga
    • 1
  • Dirk H. J. Poot
    • 1
    • 2
  • Jean-Marie Guyader
    • 1
  • Henk Smit
    • 1
  • Matthijs van Kranenburg
    • 3
    • 4
  • Robert-Jan M. van Geuns
    • 3
    • 4
  • André Uitterdijk
    • 4
  • Heleen M. M. van Beusekom
    • 4
  • Bram F. Coolen
    • 5
  • Alexander Leemans
    • 6
  • Wiro J. Niessen
    • 1
    • 2
  • Stefan Klein
    • 1
  1. 1.Biomedical Imaging Group Rotterdam, Depts. of Radiology & Medical InformaticsErasmus MCRotterdamThe Netherlands
  2. 2.Quantitative Imaging Group, Dept. of Imaging Physics, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands
  3. 3.Department of RadiologyErasmus MCRotterdamThe Netherlands
  4. 4.Department of CardiologyErasmus MCRotterdamThe Netherlands
  5. 5.Department of RadiologyAcademic Medical CenterAmsterdamThe Netherlands
  6. 6.Image Sciences InstituteUniversity Medical Center UtrechtThe Netherlands

Personalised recommendations