Motion Correction of Intravital Microscopy of Preclinical Lung Tumour Imaging Using Multichannel Structural Image Descriptor

  • Bartlomiej W. Papież
  • Thomas Tapmeier
  • Mattias P. Heinrich
  • Ruth J. Muschel
  • Julia A. Schnabel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8545)


Optical microscopy imaging techniques have enabled a wide spectrum of biomedical applications. Among visualization, a quantitative analysis of tumour cell growth in lungs is of great importance. The main challenges inherently linked with such data analysis are: local contrast changes related to tissue depth, lack of clear object boundaries due to the presence of noise, and cluttering with motion artefacts due to translational shift of the specimen and non-linear lung tissue collapse. This paper aims to address these problems by introducing a novel image registration framework specifically designed to correct for motion artefacts from optical microscopy of lung tumour cells imaging. For this purpose, a previously developed modality independent neighbourhood descriptor (MIND) was adapted to cope with multiple image channels for optical microscopy data. Two versions of this novel multichannel MIND (mMIND) are here presented. The proposed registration technique estimates both rigid transformations and non-linear deformations both common in the optical microscopy volumes and time-sequences acquisition. The performance of our registration technique based on a novel multichannel image representation is demonstrated using two distinctive optical imaging data sets of lung cells: 3D volumes with translation motion artefacts only, and time-sequences with both rigid and non-linear motion artefacts. Visual inspection of the registration outcomes and reported results of the qualitative evaluation show a promising improvement compared to images without correction.


image registration microscopy imaging lung tumour cell imaging structural image representation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cifor, A., Risser, L., Heinrich, M.P., Chung, D., Schnabel, J.A.: Rigid registration of untracked freehand 2D ultrasound sweeps to 3D CT of liver tumours. In: Yoshida, H., Warfield, S., Vannier, M.W. (eds.) Abdominal Imaging 2013. LNCS, vol. 8198, pp. 155–164. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Gonzalez, R.C., Woods, R.E.: Digital image processing. Prentice Hall (2008)Google Scholar
  3. 3.
    Heinrich, M.P., Jenkinson, M., Bhushan, M., Matin, T., Gleeson, F.V., Brady, M., Schnabel, J.A.: MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration. Med. Image Anal. 16(7), 1423–1435 (2012)CrossRefGoogle Scholar
  4. 4.
    Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, S.M., Schnabel, J.A.: Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 187–194. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Kedrin, D., Gligorijevic, B., Wyckoff, J., Verkhusha, V.V., Condeelis, J., Segall, J.E., van Rheenen, J.: Intravital imaging of metastatic behavior through a mammary imaging window. Nat. Methods 5(12), 1019–1021 (2008)CrossRefGoogle Scholar
  6. 6.
    Kim, I.-H., Chen, Y.-C.M., Spector, D.L., Eils, R., Rohr, K.: Nonrigid registration of 2-D and 3-D dynamic cell nuclei images for improved classification of subcellular particle motion. IEEE Trans. Image Process. 20(4), 1011–1022 (2011)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Kumar, A.N., Short, K.W., Piston, D.W.: A motion correction framework for time series sequences in microscopy images. Microsc. Microanal. 19, 433–450 (2013)CrossRefGoogle Scholar
  8. 8.
    Lorenz, K.S., Salama, P., Dunn, K.W., Delp, E.J.: Digital correction of motion artefacts in microscopy image sequences collected from living animals using rigid and nonrigid registration. J. Microsc. 245(2), 148–160 (2012)CrossRefGoogle Scholar
  9. 9.
    Modersitzki, J.: FAIR: Flexible Algorithms for Image Registration. SIAM, Philadelphia (2009)CrossRefGoogle Scholar
  10. 10.
    Peyrat, J.-M., Delingette, H., Sermesant, M., Xu, C., Ayache, N.: Registration of 4D cardiac CT sequences under trajectory constraints with multichannel diffeomorphic Demons. IEEE Trans. Med. Imag. 29, 1351–1368 (2010)CrossRefGoogle Scholar
  11. 11.
    Thevenaz, P., Ruttimann, U.E., Unser, M.: A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7(1), 27–41 (1998)CrossRefGoogle Scholar
  12. 12.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic Demons: Efficient non-parametric image registration. NeuroImage 45, S61–S72 (2009)Google Scholar
  13. 13.
    Wachinger, C., Navab, N.: Entropy and laplacian images: structural representations for multi-modal registration. Med. Image Anal. 16(1), 1–17 (2012)CrossRefGoogle Scholar
  14. 14.
    Yang, S., Kohler, D., Teller, K., Cremer, T., Le Baccon, P., Heard, E., Eils, R., Rohr, K.: Nonrigid registration of 3-D multichannel microscopy images of cell nuclei. IEEE Trans. Image Process. 17(4), 493–499 (2008)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Bartlomiej W. Papież
    • 1
  • Thomas Tapmeier
    • 2
  • Mattias P. Heinrich
    • 3
  • Ruth J. Muschel
    • 2
  • Julia A. Schnabel
    • 1
  1. 1.Institute of Biomedical Engineering,Department of Engineering ScienceUniversity of OxfordUK
  2. 2.Gray Institute for Radiation Oncology and BiologyUniversity of OxfordUK
  3. 3.Institute of Medical InformaticsUniversität LübeckGermany

Personalised recommendations