Skip to main content

The Impact of Landslides on Sea Level Rise

  • Chapter
  • First Online:
Storm-triggered Landslides in Warmer Climates
  • 895 Accesses

Abstract

Ocean is the largest water reservoir in the Earth’s hydrological cycle. Global sea level rise concerns come from the fact that, water kept in the slow cycling reservoirs outside those traditionally defined as hydrosphere, such as cryosphere and the occluded fossil groundwater reservoirs, may release water to the hydrosphere. Following two examples illustrate that landslides can have sea level rise consequences through affecting the container volume (Sect. 8.1) as well as through groundwater pathways (Sect. 8.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen M, Ingram W (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232

    Article  Google Scholar 

  • Bamber J, Riva R, Vermeersen B, LeBrocq A (2009) Reassessment of the potential sea-level rise from a collapse of the West Antarctic Ice Sheet. Science 324:901–903

    Article  Google Scholar 

  • Bentley C (1991) Configuration and structure of the subglacial crust. In: Tinguey RJ (ed) Geology of Antartica. Oxford University Press, Oxford, pp 335–364

    Google Scholar 

  • Berger A, Loutre M (2002) An exceptionally long interglacial ahead? Science 297:1287–1288

    Article  Google Scholar 

  • Blankenship D, Bell R, Hodge S, Brozena J, Behrendt J, Finn C (1993) Active volcanism beneath the West Antarctica ice sheet and implications for ice-sheet stability. Nature 361:526–529

    Article  Google Scholar 

  • Church JA et al (2001) Changes in sea level. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 639–693

    Google Scholar 

  • Ding Y (1991) Advanced synoptic meteorology. China Meteorologocal Press, Beijing, p 792

    Google Scholar 

  • Emori S, Brown SJ (2005) Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys Res Lett 32, L17706. doi:10.1029/2005GL023272

    Article  Google Scholar 

  • Englehardt H et al (1990) Physical conditions at the base of a fast moving Antarctica ice stream. Science 248:57–59

    Article  Google Scholar 

  • Famiglietti J, Rodell M (2013) Water in the balance. Science 340:1300–1301

    Article  Google Scholar 

  • Famiglietti J, Rodell M (2013) Water in the balance environmental science. 340, 1300–130110.1126/science.1236460

    Google Scholar 

  • Gleeson T, VanderSteen J, Sophocleous AA, Taniguchi M, Alley WM, Allen DM, Zhou Y (2010) Commentary: groundwater sustainability strategies. Nat Geosci 3:378–379. doi:10.1038/ngeo881

    Article  Google Scholar 

  • Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN (2005) Trends in intense precipitation in the climate record. J Climate 18:1326–1350

    Article  Google Scholar 

  • Harrold T (1973) Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Q J R Meteorol Soc 99:232–251

    Article  Google Scholar 

  • IPCC AR4 (2007) Climate change 2007. The physical science basis. In: Solomon S, Qin D, Manning M (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change

    Google Scholar 

  • Jezek K (2003) Observing the Antarctic Ice Sheet using the RADARSAT‐1 synthetic aperture radar. Polit Geogr 27:197–209

    Article  Google Scholar 

  • Jezek K (2008) The RADARSAT-1 Antarctic mapping project. BPRC Report No. 22, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio, p 64

    Google Scholar 

  • Joughin I, Alley R (2011) Stability of the West Antarctic ice sheet in a warming world. Nat Geosci. doi:10.1038/NGEO1194

    Google Scholar 

  • Karl TR, Knight RW (1998) Secular trends of precipitation amount, frequency, and intensity in the USA. Bull Am Meteorol Soc 79:231–241

    Article  Google Scholar 

  • Lackmann G (2013) The south-central US flood of May 2010, present and future. J Climate 26:4688–4709

    Article  Google Scholar 

  • MacAyeal D (1989) Large-scale ice flow over a viscous basal sediment: theory and application to ice stream B, Antarctica. J Geophys Res 94:4071–4087

    Article  Google Scholar 

  • Mercer JH (1978) West Antarctic ice sheet and CO2 greenhouse effect – threat of disaster. Nature 271:321–325

    Article  Google Scholar 

  • Norton I (1982) Paleomotion between Africa, South America, and Antarctica, and implications for the Antarctic Peninsula. In: Craddock C (ed) Antarctic Geoscience. University of Wisconsin Press, Madison, WI, pp 99–106

    Google Scholar 

  • Oppenheimer M (1998) Global warming and the stability of the West Antarctica Ice Sheet. Nature 393:325–332

    Article  Google Scholar 

  • Orlanski I (1982) Orographically induced vortex centers. Proceedings of the first Sino-American workshop on mountain meteorology, May 1982. Science Press, Beijing, p 699

    Google Scholar 

  • Ren D, Leslie L, Lynch MJ, Duan Q, Dai Y, Shangguan W (2013) Why was the August 2010 Zhouqu landslide so powerful? Geography, Environment, Sustainability 1:67–79

    Google Scholar 

  • Ren D, Leslie L (2011) Three positive feedback mechanisms for ice sheet melting in a warming climate. J Glaciol 57:206

    Article  Google Scholar 

  • Ren D, Leslie L, Fu R, Dickinson R (2011a) Predicting storm-triggered landslides and ecological consequences. Bull Am Meteorol Soc 92:129–139. doi: 10.1175/2010BAMS3017.1

    Google Scholar 

  • Ren D, Fu R, Leslie LM, Dickinson R (2011c) Modeling the mudslide aftermath of the 2007 southern California wildfires. J Nat Hazards. doi:10.1007/s11069-010-9615-5

    Google Scholar 

  • Ren D, Fu R, Leslie LM, Karoly DJ, Chen J, Wilson C (2011b) A multirheology ice model: formulation and application to the Greenland ice sheet. J Geophys Res 116, D05112. doi:10.1029/2010JD014855

    Google Scholar 

  • Ren D, Leslie LM, Karoly DJ (2008) Landslide risk analysis using a new constitutive relationship for granular flow. Earth Interact 12:1–16

    Article  Google Scholar 

  • Ren D, Wang J, Fu R, Karoly D, Hong Y, Leslie LM, Fu C, Huang G (2009) Mudslide caused ecosystem degradation following Wenchuan earthquake 2008. Geophys Res Lett 36, L05401. doi:10.1029/2008GL036702

    Google Scholar 

  • Rignot E, Bamber J, van den Broeke M, Davis C, Li Y, van de Berg W, van Meijgaard E (2008) Recent mass loss of the Antarctic ice sheet from dynamic thinning. Nat Geosci. doi:10.1038/ngeo102

    Google Scholar 

  • Scanlon BR, Faunt CC, Longuevergne L, Reedy RC, Alley WM, McGuire VL, McMahon PB (2012) Groundwater depletion and sustainability of irrigation in the US high plains and central valley. Proc Natl Acad Sci 109(24):9320–9325

    Article  Google Scholar 

  • Schoof C (2007) Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J Geophys Res Earth 112:F03S28

    Google Scholar 

  • Semenov V, Bengtsson L (2002) Secular trends in daily precipitation characteristic greenhouse gas simulation with a coupled AOGCM. Climate Dynam 19:123–140

    Article  Google Scholar 

  • Skamarock W C, Klemp JB, Dudhia J, Gill DO, Barker DM, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF Version 3. NCAR Tech. Note NCAR/TN-475+STR, p 125

    Google Scholar 

  • Thomas R (1973) The creep of ice shelves: theory. J Glaciol 12(64):45–53

    Google Scholar 

  • Trenberth KE (1999) Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim Change 42:327–339

    Article  Google Scholar 

  • Van den Broeke M, van de Berg W, van Meijgaard E (2006) Snowfall in coastal West Antarctica much greater than previously assumed. Geophys Res Lett 33, L02505. doi:10.1029/2005GL025239

    Google Scholar 

  • Vaughan D (2006) Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance and sea level. Arct Antarc Alp Res 38:147–152

    Article  Google Scholar 

  • Voss K, Famiglietti J, Lo M, de Linage C, Rodell M, Swenson S (2013) Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour Res 49:904–914

    Article  Google Scholar 

  • Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37, L20402. doi:10.1029/2010GL044571

    Article  Google Scholar 

  • Zhao M, Running S (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ren, D. (2015). The Impact of Landslides on Sea Level Rise. In: Storm-triggered Landslides in Warmer Climates. Springer, Cham. https://doi.org/10.1007/978-3-319-08518-0_8

Download citation

Publish with us

Policies and ethics