Phoenix: DGA-Based Botnet Tracking and Intelligence

  • Stefano Schiavoni
  • Federico Maggi
  • Lorenzo Cavallaro
  • Stefano Zanero
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8550)

Abstract

Modern botnets rely on domain-generation algorithms (DGAs) to build resilient command-and-control infrastructures. Given the prevalence of this mechanism, recent work has focused on the analysis of DNS traffic to recognize botnets based on their DGAs. While previous work has concentrated on detection, we focus on supporting intelligence operations. We propose Phoenix, a mechanism that, in addition to telling DGA- and non-DGA-generated domains apart using a combination of string and IP-based features, characterizes the DGAs behind them, and, most importantly, finds groups of DGA-generated domains that are representative of the respective botnets. As a result, Phoenix can associate previously unknown DGA-generated domains to these groups, and produce novel knowledge about the evolving behavior of each tracked botnet. We evaluated Phoenix on 1,153,516 domains, including DGA-generated domains from modern, well-known botnets: without supervision, it correctly distinguished DGA- vs. non-DGA-generated domains in 94.8 percent of the cases, characterized families of domains that belonged to distinct DGAs, and helped researchers “on the field” in gathering intelligence on suspicious domains to identify the correct botnet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., Feamster, N.: Building a dynamic reputation system for dns. In: USENIX Security (2010)Google Scholar
  2. 2.
    Antonakakis, M., Perdisci, R., Lee, W., Vasiloglou, N., Dagon, D.: Detecting malware domains at the upper DNS hierarchy. In: USENIX Security, vol. 11 (2011)Google Scholar
  3. 3.
    Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou, N., Abu-Nimeh, S., Lee, W., Dagon, D.: From throw-away traffic to bots: detecting the rise of DGA-based malware. In: USENIX Security, USENIX Association (August 2012)Google Scholar
  4. 4.
    Bailey, T.M., Hahn, U.: Determinants of wordlikeness: Phonotactics or lexical neighborhoods? Journal of Memory and Language 44(4), 568–591 (2001)CrossRefGoogle Scholar
  5. 5.
    Bilge, L., Balzarotti, D., Robertson, W., Kirda, E., Kruegel, C.: Disclosure: detecting botnet command and control servers through large-scale netflow analysis. In: ACSAC. ACM (2012)Google Scholar
  6. 6.
    Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M.: Exposure: Finding malicious domains using passive DNS analysis. In: NDSS (2011)Google Scholar
  7. 7.
    Han, J., Kamber, M.: Data mining: concepts and techniques. Morgan Kaufmann (2006)Google Scholar
  8. 8.
    Holz, T., Gorecki, C., Rieck, K., Freiling, F.C.: Measuring and detecting fast-flux service networks. In: NDSS (2008)Google Scholar
  9. 9.
    Jones, E., Oliphant, T., Peterson, P.: et al.: SciPy: Open source scientific tools for Python (2001), http://www.scipy.org/ (accessed: January 28, 2013)
  10. 10.
    Leder, F., Werner, T.: Know your enemy: Containing conficker. The Honeynet Project, University of Bonn, Germany, Tech. Rep. (2009)Google Scholar
  11. 11.
    Marinos, L., Sfakianakis, A.: ENISA Threat Landscape. Tech. rep., ENISA (2012)Google Scholar
  12. 12.
    Neugschwandtner, M., Comparetti, P.M., Platzer, C.: Detecting malware’s failover C&C strategies with Squeeze. In: ACSAC. ACM (2011)Google Scholar
  13. 13.
    Newman, M.: Networks: an introduction. Oxford University Press (2010)Google Scholar
  14. 14.
    Passerini, E., Paleari, R., Martignoni, L., Bruschi, D.: fluXOR: Detecting and monitoring fast-flux service networks. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 186–206. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Perdisci, R., Corona, I., Giacinto, G.: Early detection of malicious flux networks via large-scale passive DNS analysis. IEEE Transactions on Dependable and Secure Computing 9(5), 714–726 (2012)Google Scholar
  16. 16.
    Rossow, C., Dietrich, C.J., Grier, C., Kreibich, C., Paxson, V., Pohlmann, N., Bos, H., van Steen, M.: Prudent practices for designing malware experiments: Status quo and outlook. In: Security and Privacy (SP). IEEE (2012)Google Scholar
  17. 17.
    Schiavoni, S., Maggi, F., Cavallaro, L., Zanero, S.: Tracking and Characterizing Botnets Using Automatically Generated Domains. Tech. rep. (2013), http://arxiv.org/abs/1311.5612
  18. 18.
    Scholes, R.J.: Phonotactic grammaticality. No. 50, Mouton (1966)Google Scholar
  19. 19.
    Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer, R., Kruegel, C., Vigna, G.: Your botnet is my botnet: analysis of a botnet takeover. In: CCS. ACM (2009)Google Scholar
  20. 20.
    Yadav, S., Reddy, A.L.N.: Winning with DNS failures: Strategies for faster botnet detection. In: Rajarajan, M., Piper, F., Wang, H., Kesidis, G. (eds.) SecureComm 2011. LNICST, vol. 96, pp. 446–459. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Yadav, S., Reddy, A.K.K., Reddy, A., Ranjan, S.: Detecting algorithmically generated domain-flux attacks with dns traffic analysis. IEEE/ACM TON 20(5) (2012)Google Scholar
  22. 22.
    Yadav, S., Reddy, A.K.K., Reddy, A.N., Ranjan, S.: Detecting algorithmically generated malicious domain names. In: IMC. ACM (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Stefano Schiavoni
    • 1
  • Federico Maggi
    • 1
  • Lorenzo Cavallaro
    • 2
  • Stefano Zanero
    • 1
  1. 1.Politecnico di MilanoItaly
  2. 2.Royal HollowayUniversity of LondonUK

Personalised recommendations