Skip to main content

Constructive Reversible Logic Synthesis for Boolean Functions with Special Properties

  • Conference paper
Reversible Computation (RC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8507))

Included in the following conference series:

Abstract

Reversible computation is gaining increasing relevance in the context of several post-CMOS technologies, the most prominent of those being quantum computing. The problem of implementing a given Boolean function using a set of elementary reversible logic gates is known as reversible logic synthesis. Though several generic reversible logic synthesis methods have been proposed so far, yet the scalability and implementation efficiency of these methods pose a difficult challenge. Compared to these generic synthesis methods, few reversible logic synthesis approaches for restricted classes of Boolean functions demonstrated better implementation efficiency and scalability. In this paper, we propose a novel constructive reversible logic synthesis technique for Boolean functions with special properties. The proposed techniques are scalable, fast and outperforms state-of-the-art generic reversible synthesis methods in terms of quantum cost, gate count and the number of lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdessaied, N., Soeken, M., Thomsen, M.K., Drechsler, R.: Upper bounds for reversible circuits based on Young subgroups. Information Processing Letters 114(6), 282–286 (2014) ISSN 0020-0190, http://dx.doi.org/10.1016/j.ipl.2014.01.003

  2. Bennett, C.H.: Logical Reversibility of Computation. IBM Journal of Research and Development 6, 525–532 (1973)

    Article  Google Scholar 

  3. Bérut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.: Experimental verification of Landauer’s principle linking information and thermodynamics. Nature, 187–189 (March 2012)

    Google Scholar 

  4. Beth, T., Rötteler, M.: Quantum algorithms: Applicable Algebra and Quantum physics. In: Quantum Information, pp. 96–150. Springer (2001)

    Google Scholar 

  5. Carlet, C.: Boolean Functions for Cryptography and Error Correcting Codes. In: Crama, Y., Hammer, P. (eds.) Boolean Methods and Models, pp. 257–397. Cambridge University Press (2010), http://www.math.univ-paris13.fr/~carlet/pubs.html

  6. Chee, S., Lee, S., Lee, D., Sung, S.H.: On the Correlation Immune Functions and Their Nonlinearity. In: Kim, K.-C., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 232–243. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  7. Chakrabory, K., Maitra, S.: Quantum algorithm to check Resiliency of a Boolean function. In: International Workshop on Coding and Cryptography (2013)

    Google Scholar 

  8. Deb, A., Das, D.K., Rahaman, H., Bhattacharya, B.B., Wille, R., Drechsler, R.: Reversible Circuit Synthesis of Symmetric Functions Using a Simple Regular Structure. In: Workshop on Reversible Computation, pp. 182–195 (2013)

    Google Scholar 

  9. Dillon, J.F.: Elementary Hadamard Difference Set, PhD Dissertation, University of Maryland, College Park, MD (1974)

    Google Scholar 

  10. Gupta, P., Agrawal, A., Jha, N.K.: An Algorithm for Synthesis of Reversible Logic Circuits. IEEE TCAD 25(11), 2317–2330 (2006)

    Google Scholar 

  11. Landauer, R.: Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5, 183–191 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  12. Maitra, S., Pasalic, E.: A Maiorana–McFarland type Construction for Resilient Boolean functions on n variables (n even) with nonlinearity. Discrete Applied Mathematics 154(2), 357–369 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Maslov, D.: Reversible Benchmarks (2014), http://webhome.cs.uvic.ca/~dmaslov (last accessed March 2014)

  14. Maslov, D., Mathew, J., Cheung, D., Pradhan, D.K.: An O(m2)-depth quantum algorithm for the elliptic curve discrete logarithm problem over GF(2m)a. In: Quantum Information & Computation, pp. 610–621 (2009)

    Google Scholar 

  15. Maslov, D.: Efficient reversible and quantum implementations of symmetric Boolean functions. IEE Proceedings of Circuits, Devices and Systems 153(5), 467–472 (2006)

    Article  Google Scholar 

  16. Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum Circuit Simplification and Level Compaction. IEEE TCAD 27(3), 436–444 (2008), doi:10.1109/TCAD.2007.911334

    Google Scholar 

  17. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  18. Miller, D.M., Maslov, D., Dueck, G.W.: A Transformation Based Algorithm for Reversible Logic Synthesis. In: Proceedings of DAC, pp. 318–323 (2003)

    Google Scholar 

  19. Moraga, C., Hadjam, F.Z.: On Double gates for Reversible Computing Circuits. In: Proceedings of International Workshop on Boolean Problems (2012)

    Google Scholar 

  20. Nayeem, N.M., Rice, J.E.: Improved ESOP-based Synthesis of Reversible Logic. In: Proceedings of the Reed-Muller Workshop (2011)

    Google Scholar 

  21. Patel, K.N., Markov, I.L., Hayes, J.P.: Optimal synthesis of linear reversible circuits. Quantum Information & Computation 8(3), 282–294 (2008)

    MATH  MathSciNet  Google Scholar 

  22. Pasalic, E., Maitra, S., Johansson, T., Sarkar, P.: New constructions of resilient and correlation immune Boolean functions achieving upper bound on nonlinearity. Electronic Notes in Discrete Mathematics 6, 158–167 (2001)

    Article  MathSciNet  Google Scholar 

  23. Perkowski, M., Kerntopf, P., Buller, A., Chrzanowska-Jeske, M., Mischenko, A., Song, X., Al-Rabadi, A., Jozwiak, L., Coppola, A., Massey, B.: Regularity and Symmetry as a Base for Efficient Realization of Reversible Logic Circuits. In: Proceedings of IWLS, pp. 90–95 (2001)

    Google Scholar 

  24. Pieprzyk, J., Finkelstein, G.: Towards Effective Nonlinear Cryptosystem Design. In: Proceedings of IEEE Computers and Digital Techniques, vol. 135(6), pp. 143–7062 (November 1988) ISSN:0143-7062

    Google Scholar 

  25. Preneel, B., Van Leekwijck, W., Van Linden, L., Govaerts, R., Vandewalle, J.: Propagation characteristics of Boolean functions. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 161–173. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  26. Saeedi, M., Markov, I.L.: Synthesis and Optimization of Reversible Circuits - A Survey. CoRR abs/1110.2574 (2011), http://arxiv.org/abs/1110.2574

  27. Sarkar, P., Maitra, S.: Construction of nonlinear Boolean functions with important cryptographic properties. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 485–506. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  28. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: A toolkit for reversible circuit design. In: Workshop on Reversible Computation, pp. 69–72 (2010)

    Google Scholar 

  29. Szyprowski, M., Kerntopf, P.: Reducing Quantum Cost of Pairs of Multi-Control Toffoli Gates. In: International Workshop on Boolean Problems (2012)

    Google Scholar 

  30. Szyprowski, M., Kerntopf, P.: Low Quantum Cost Realization of Generalized Peres and Toffoli Gates with Multiple-Control Signals. In: 13th IEEE International Conference on Nanotechnology, pp. 802–807 (2013)

    Google Scholar 

  31. Tarannikov, Y.V.: New Constructions of Resilient Boolean Functions with Maximal Nonlinearity. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, p. 66. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  32. Wille, R., Drechsler, R.: BDD-based Synthesis of Reversible Logic for Large Functions. In: Proceedings of DAC, pp. 270–275 (2009)

    Google Scholar 

  33. Yarlagadda, R., Hershey, J.E.: Analysis and synthesis of bent sequences. IEEE Proceedings on Computers and Digital Techniques 136(2), 112–123 (1989)

    Article  Google Scholar 

  34. Younes, A.: Synthesis and Optimization of Reversible Circuits for Homogeneous Boolean Functions. arXiv:0710.0664 [quant-ph] (2007)

    Google Scholar 

  35. Zhang, F., Hu, Y., Ma, H., Xie, M.: Constructions of Maiorana-McFarland’s Bent Functions of Prescribed Degree. In: International Conference on Computational Intelligence and Security (CIS), pp. 315–319 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chattopadhyay, A., Majumder, S., Chandak, C., Chowdhury, N. (2014). Constructive Reversible Logic Synthesis for Boolean Functions with Special Properties. In: Yamashita, S., Minato, Si. (eds) Reversible Computation. RC 2014. Lecture Notes in Computer Science, vol 8507. Springer, Cham. https://doi.org/10.1007/978-3-319-08494-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08494-7_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08493-0

  • Online ISBN: 978-3-319-08494-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics