Skip to main content

Quantum Circuit Optimization by Hadamard Gate Reduction

  • Conference paper
Reversible Computation (RC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8507))

Included in the following conference series:

Abstract

Due to its fault-tolerant gates, the Clifford+T library consisting of Hadamard (denoted by H), T, and CNOT gates has attracted interest in the synthesis of quantum circuits. Since the implementation of T gates is expensive, recent research is aiming at minimizing the use of such gates. It has been shown that T-depth optimizations can be implemented efficiently for circuits consisting only of T and CNOT gates and that H gates impede the optimization significantly.

In this paper, we investigate the role of H gates in reducing the T-count and T-depth for quantum circuits. To reduce the number of H gates, we propose several algorithms targeting different steps in the synthesis of reversible functions as quantum circuits.

Experiments show the effect of H gate reductions on the costs for T-count and T-depth. Our approach yields a significant improvement of up to 88% in the final T-depth compared to the best known T-depth optimization technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 439(1907), 553–558 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. Foundations of Computer Science, 124–134 (1994)

    Google Scholar 

  3. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25, 1000–1010 (2006)

    Article  Google Scholar 

  4. Kliuchnikov, V., Maslov, D., Mosca, M.: Fast and efficient exact synthesis of single-qubit unitaries generated by Clifford and T gates. Quantum Information & Computation 13(7-8), 607–630 (2013)

    MathSciNet  Google Scholar 

  5. Jones, N.C.: Logic synthesis for fault-tolerant quantum computers. arXiv preprint arXiv:1310.7290 (2013)

    Google Scholar 

  6. Fowler, A.G., Stephens, A.M., Groszkowski, P.: High-threshold universal quantum computation on the surface code. Physical Review A 80(5), 52312 (2009)

    Article  Google Scholar 

  7. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. on CAD of Integrated Circuits and Systems 32(6), 818–830 (2013)

    Article  Google Scholar 

  8. Gosset, D., Kliuchnikov, V., Mosca, M., Russo, V.: An algorithm for the T-count. arXiv preprint arXiv:1308.4134 (2013)

    Google Scholar 

  9. Amy, M., Maslov, D., Mosca, M.: Polynomial-time T-depth optimization of Clifford+T circuits via matroid partitioning. arXiv preprint arXiv:1303.2042 (2013)

    Google Scholar 

  10. Toffoli, T.: Reversible Computing. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)

    Chapter  Google Scholar 

  11. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. TCAD 22(6), 710–722 (2003)

    Google Scholar 

  12. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Univ. Press (2000)

    Google Scholar 

  13. Barenco, A., Bennett, C.H., Cleve, R., DiVinchenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Physical Review A 52, 3457–3467 (1995)

    Article  Google Scholar 

  14. Sasanian, Z., Wille, R., Miller, D.M., Drechsler, R.: Realizing reversible circuits using a new class of quantum gates. In: Design Automation Conference, pp. 36–41 (2012)

    Google Scholar 

  15. Selinger, P.: Quantum circuits of T-depth one. Physical Review A 87(4), 42302 (2013)

    Article  Google Scholar 

  16. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Design Automation Conference, pp. 318–323 (2003)

    Google Scholar 

  17. Fazel, K., Thornton, M., Rice, J.: ESOP-based Toffoli gate cascade generation. In: IEEE Pacific Rim Conference on Communications, Computers and Signal Processing. PacRim 2007, pp. 206–209 (2007)

    Google Scholar 

  18. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of reversible circuits with minimal lines for large functions. In: Asia and South Pacific Design Automation Conference, pp. 59–70 (2012)

    Google Scholar 

  19. Wille, R., Große, D., Dueck, G., Drechsler, R.: Reversible logic synthesis with output permutation. In: 2009 22nd International Conference on VLSI Design, pp. 189–194 (2009)

    Google Scholar 

  20. Maslov, D., Dueck, G., Miller, D.: Simplification of Toffoli networks via templates. In: Proceedings of the 16th Symposium on Integrated Circuits and Systems Design, pp. 53–58 (2003)

    Google Scholar 

  21. Wille, R., Soeken, M., Drechsler, R.: Reducing the number of lines in reversible circuits. In: IEEE Design Automation Conference, pp. 647–652 (2010)

    Google Scholar 

  22. Abdessaied, N., Wille, R., Soeken, M., Drechsler, R.: Reducing the depth of quantum circuits using additional circuit lines. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 221–233. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Soeken, M., Wille, R., Dueck, G., Drechsler, R.: Window optimization of reversible and quantum circuits. In: 2010 IEEE 13th International Symposium on Design and Diagnostics of Electronic Circuits and Systems, pp. 341–345 (2010)

    Google Scholar 

  24. Sasanian, Z., Miller, D.M.: Reversible and quantum circuit optimization: A functional approach. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 112–124. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Maslov, D., Dueck, G.: Improved quantum cost for n-bit Toffoli gates. Electronics Letters 39, 1790 (2003)

    Article  Google Scholar 

  26. Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control Toffoli gates. In: 41st IEEE International Symposium on Multiple-Valued Logic, pp. 217–222 (2011)

    Google Scholar 

  27. Wille, R., Soeken, M., Otterstedt, C., Drechsler, R.: Improving the mapping of reversible circuits to quantum circuits using multiple target lines. In: Asia and South Pacific Design Automation Conference, pp. 145–150 (2013)

    Google Scholar 

  28. Maslov, D., Dueck, G., Miller, D., Negrevergne, C.: Quantum circuit simplification and level compaction. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27(3), 436–444 (2008)

    Article  Google Scholar 

  29. Soeken, M., Miller, D.M., Drechsler, R.: Quantum circuits employing roots of the Pauli matrices. Physical Review A 88, 042322 (2013)

    Article  Google Scholar 

  30. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: Revkit: A toolkit for reversible circuit design. Journal of Multiple-Valued Logic & Soft Computing 18(1) (2012), RevKit is available at http://www.revkit.org

  31. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online resource for reversible functions and reversible circuits. In: 38th IEEE International Symposium on Multiple-Valued Logic, pp. 220–225 (2008), RevLib is available at http://www.revlib.org

  32. Maslov, D.: Reversible logic synthesis benchmarks page, http://webhome.cs.uvic.ca/~dmaslov/ (last accessed January 2011)

  33. Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible Toffoli networks. ACM Transactions on Design Automation of Electronic Systems (TODAES) 12(4), 42 (2007)

    Article  Google Scholar 

  34. De Vos, A., Van Rentergem, Y.: Young subgroups for reversible computers. Advances in Mathematics of Communications 2(2), 183–200 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Abdessaied, N., Soeken, M., Drechsler, R. (2014). Quantum Circuit Optimization by Hadamard Gate Reduction. In: Yamashita, S., Minato, Si. (eds) Reversible Computation. RC 2014. Lecture Notes in Computer Science, vol 8507. Springer, Cham. https://doi.org/10.1007/978-3-319-08494-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08494-7_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08493-0

  • Online ISBN: 978-3-319-08494-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics