Emotion Recognition and Its Applications

  • A. Kołakowska
  • A. Landowska
  • M. Szwoch
  • W. Szwoch
  • M. R. Wróbel

Abstract

This paper aims at illustrating diversity of possible emotion recognition applications. It provides concise review of affect recognition methods based on different inputs such as biometrics, video channel or behavioral data. It proposes a set of research scenarios of emotion recognition applications in the following domains: software engineering, website customization, education, and gaming. The scenarios show complexity and problems of applying affective computing in different domains. Analysis of the scenarios allows drawing some conclusions on challenges of automatic recognition that have to be addressed by further research.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, E.: Fundamentals of Game Design. New Riders Publishing (2009)Google Scholar
  2. Blackmon, M., Polson, P., Kitajima, M., Lewis, C.: Cognitive Walkthrough for the Web. In: Human Factors in Computing Systems: Proceedings of CHI 2002, pp. 463–470. ACM, New York (2002)Google Scholar
  3. Dubosson-Torbay, M., Osterwalder, A., Pigneur, Y.: E-business model design, classification, and measurements. Thunderbird International Business Review 44(1), 5–23 (2002)CrossRefGoogle Scholar
  4. Hill, D.: Emotionomics: Winning Hearts and Minds. Kogan Page Publishers, USA (2009)Google Scholar
  5. Hudlicka, E.: To feel or not to feel: The role of affect in human-computer interaction. Int. J. Hum.-Comput. St. 59(1), 1–32 (2003)CrossRefGoogle Scholar
  6. Jerritta, S., Murugappan, M., Nagarajan, R., Wan, K.: Physiological signals based human emotion recognition: a review. In: Proc. IEEE 7th International Colloquium on Signal Processing and its Applications (2011)Google Scholar
  7. Kapoor, A., Picard, R.W.: Multimodal affect recognition in learning environments. In: Proceedings of the 13th Annual ACM International Conference on Multimedia, pp. 677–682 (2005)Google Scholar
  8. Kołakowska, A., Landowska, A., Szwoch, M., Szwoch, W., Wróbel, M.: Emotion Recognition and its Application in Software Engineering. In: Proc. 6th International Conference on Human Systems Interaction, pp. 532–539 (2013)Google Scholar
  9. Kołakowska, A.: A review of emotion recognition methods based on keystroke dynamics and mouse movements. In: Proc. 6th International Conference on Human Systems Interaction, pp. 548–555 (2013)Google Scholar
  10. Landowska, A.: Affective computing and affective learning – methods, tools and prospects, EduAction. Electronic Education Magazine (2013) (in printing)Google Scholar
  11. Linggaard, G., Fernandes, G., Dudek, C., Brown, J.: Attention web designers: You have 50 miliseconds to make a good first impression. Behaviour and Information Technology 25(2), 115–126 (2006)CrossRefGoogle Scholar
  12. MacCormack, A., Kemerer, C.F., Cusumano, M., Crandall, B.: Trade-offs between productivity and quality in selecting software development practices. IEEE Software 20(5), 78–85 (2003)CrossRefGoogle Scholar
  13. McCoy, S., Everard, A., Polak, P., Galletta, D.F.: The effects of online advertising. Communications of the ACM 50(3), 84–88 (2007)CrossRefGoogle Scholar
  14. Picard, R.: Affective computing: challenges. Int. J. Hum.-Comput. St. 59(1), 55–64 (2003)CrossRefMathSciNetGoogle Scholar
  15. Picard, R., Papert, S., Bender, W., Blumberg, B., Breazeal, C., Cavallo, D., Strohecker, C.: Affective learning – a manifesto. BT Technology Journal 22(4), 253–269 (2004)CrossRefGoogle Scholar
  16. Ren, Z., Meng, J., Yuan, J., Zhang, Z.: Robust hand gesture recognition with kinect sensor. In: Proc. 19th ACM International Conference on Multimedia, pp. 759–760 (2011)Google Scholar
  17. Sheng, Z., Zhu-Ying, L., Wan-Xin, D.: The model of e-learning based on affective computing. In: Proc. 3rd IEEE International Conference on Advanced Computer Theory and Engineering, p. V3-269 (2010)Google Scholar
  18. Szwoch, M.: FEEDB: a Multimodal Database of Facial Expressions and Emotions. In: Proc. 6th International Conference on Human Systems Interaction, pp. 524–531 (2013)Google Scholar
  19. Szwoch, W.: Using Physiological Signals for Emotion. In: Proc. 6th International Conference on Human Systems Interaction, pp. 556–561 (2013)Google Scholar
  20. Wróbel, M.R.: Emotions in the software development. In: Proc. 6th International Conference on Human Systems Interaction, pp. 518–523 (2013)Google Scholar
  21. Zeng, Z., Pantic, M., Roisman, G., Huang, T.: A survey of affect recognition methods: Audio, visual, and spontaneous expressions. IEEE T. Pattern Anal. 31(1), 39–58 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • A. Kołakowska
    • 1
  • A. Landowska
    • 1
  • M. Szwoch
    • 1
  • W. Szwoch
    • 1
  • M. R. Wróbel
    • 1
  1. 1.Faculty of Electronics, Telecommunications and InformaticsGdansk University of TechnologyGdańskPoland

Personalised recommendations