Skip to main content

Self-Organization in Cells I: Active Processes

  • Chapter
  • First Online:
  • 4601 Accesses

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 41))

Abstract

Another fundamental question in modern cell biology is how cellular and subcellular structures are formed and maintained given their particular molecular components. How are the different shapes, sizes, and functions of cellular organelles determined, and why are specific structures formed at particular locations and stages of the life cycle of a cell? In order to address these questions it is necessary to consider the theory of self-organizing non-equilibrium systems [441].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Atanasova, K.T., Burgo, A., Galli, T., Holcman, D.: Quantifying neurite growth mediated by interactions among secretory vesicles, microtubules, and actin networks. Biophys. J. 96, 840–857 (2009)

    Google Scholar 

  2. Barnhart, E.L., Lee, K.C., Keren, K., Mogilner, A., Theriot, J.A.: An adhesion-dependent switch between mechanisms that determine motile cell shape. PLoS Biol. 9, e1001059 (2011)

    Google Scholar 

  3. Binder, B., Goede, A., Berndt, N., Holzhutter, H.-G.: A conceptual mathematical model of the dynamic self-organisation of distinct cellular organelles. PLoS One 4, e8295 (2009)

    Google Scholar 

  4. Boettiger, D.: Mechanical control of integrin-mediated adhesion and signaling. Curr. Opin. Cell Biol. 24, 592–599 (2012)

    Google Scholar 

  5. Bray, D.: Cell Movements, 2nd edn. Garland, New York (2001)

    Google Scholar 

  6. Bressloff, P.C.: A stochastic model of intraflagellar transport. Phys. Rev. E 73, 061916 (2006)

    MathSciNet  Google Scholar 

  7. Bressloff, P.C.: Two-pool model of cooperative vesicular transport. Phys. Rev. E 86, 031911 (2012)

    Google Scholar 

  8. Bressloff, P.C., Newby, J.M.: Filling of a Poisson trap by a population of random intermittent searchers. Phys. Rev. E 85, 031909 (2012)

    Google Scholar 

  9. Brust-Mascher, I., Civelekoglu-Scholey, G., Kwon, M., Mogilner, A., Scholey, J.M.: Model for anaphase B: role of three mitotic motors in a switch from poleward flux to spindle elongation. Proc. Natl. Acad. Sci. USA 101, 15938–15943 (2004)

    Google Scholar 

  10. Burbank, K.S., Mitchison, T.J., Fisher, D.S.: Slide-and-cluster models for spindle assembly. Curr. Biol. 17, 1373–1383 (2007)

    Google Scholar 

  11. Cameron, L.A., Giardini, P.A., Soo, F.S., Theriot, J.A.: Secrets of actin-based motility revealed by a bacterial pathogen. Nat. Rev. Mol. Cell Biol. 1, 110–119 (2000)

    Google Scholar 

  12. Capas, O., Sens, P.: Chromosome oscillations in mitosis. Phys. Rev. Lett. 97, 128102 (2006)

    Google Scholar 

  13. Carazo-Salas, R.E., et al.: Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nat. Cell Biol. 3, 228–234 (2001)

    Google Scholar 

  14. Carlsson, A.E.: Growth of branched actin networks against obstacles. Biophys. J. 81, 1907–1923 (2001)

    Google Scholar 

  15. Cassimeris, L., Rieder, C., Salmon, E.: Microtubule assembly and kinetochore directional instability in vertebrate monopolar spindles: implications for the mechanism of chromosome congression. J. Cell Sci. 107, 285–297 (1994)

    Google Scholar 

  16. Chan, C.E., Odde, D.J.: Traction dynamics of filopodia on compliant substrates. Science 322, 1687–1691 (2008)

    Google Scholar 

  17. Choi, C.K., Vicente-Manzanares, M., Zareno, J., Whitmore, L.A., Mogilner, A., Horwitz, A.R.: Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat. Cell Biol. 10, 1039–1050 (2008)

    Google Scholar 

  18. Civelekoglu-Scholey, G., Scholey, J.M.: Mitotic force generators and chromosome segregation. Cell. Mol. Life Sci. 67, 2231–2250 (2010)

    Google Scholar 

  19. Civelekoglu-Scholey, G., Sharp, D.J., Mogilner, A., Scholey, J.M.: Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis. Biophys. J. 90, 3966–3982 (2006)

    Google Scholar 

  20. Cox, J.S., Chapman, R.E., Walter, P.: The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Mol. Biol. Cell 8, 1805–1814 (1997)

    Google Scholar 

  21. Cytrynbaum, E.N., Scholey, J.M., Mogilner, A.: A force balance model of early spindle pole separation on drosophila embryos. Biophys. J. 84, 757–769 (2003)

    Google Scholar 

  22. Danuser, G., Allard, J., Mogilner, A.: Mathematical modeling of eukaryotic cell migration: insights beyond experiments. Annu. Rev. Cell Dev. Biol. 29, 501–528 (2013)

    Google Scholar 

  23. Dickinson, R.B.: Models for actin polymerization. J. Math. Biol. 58, 81–103 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Dickinson, R.B., Purich, D.L.: Clamped-filament elongation model for actin-based motors. Biophys. J. 82, 605–617 (2002)

    Google Scholar 

  25. DiMilla, P.A., Barbee, K., Lauffenburger, D.A.: Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys. J. 60, 15–37 (1991)

    Google Scholar 

  26. Dmitrieff, S., Sens, P.: Cooperative protein transport in cellular organelles. Phys. Rev. E 83, 041923 (2011)

    Google Scholar 

  27. Dogterom, M., Leibler, S.: Physical aspects of the growth and regulation of microtubule structures. Phys. Rev. Lett. 70, 1347–1350 (1993)

    Google Scholar 

  28. Evans, E.: Probing the relation between force-lifetime-and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001)

    Google Scholar 

  29. Ferenz, N.P., Paul, R., Fagerstrom, C., Mogilner, A., Wadsworth, P.: Dynein antagonizes eg5 by crosslinking and sliding antiparallel microtubules. Curr. Biol. 19, 1833–1838 (2009)

    Google Scholar 

  30. Gardel, M.L., Schneider, I.C., Aratyn-Schaus, Y., Waterman, C.M.: Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell Dev. Biol. 26, 315–333 (2010)

    Google Scholar 

  31. Gardner, M.K., Odde, D.: Modeling of chromosome motility during mitosis. Curr. Opin. Cell Biol. 18, 639–647 (2006)

    Google Scholar 

  32. Gardner, M.K., et al.: Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congress ion in yeast. Mol. Biol. Cell 16, 3764–3775 (2005)

    Google Scholar 

  33. Gardner, M.K., Zanic, M., Gell, C., Bormuth, V., et al.: Depolymerizing kinesins Kip3 and MCAK shape cellular microtubule architecture by differential control of catastrophe. Cell 147, 1092–1103 (2011)

    Google Scholar 

  34. Gardner, M.K., Zanic, M., Howard, J.: Microtubule catastrophe and rescue. Curr. Opin. Cell Biol. 25, 14–22 (2013)

    Google Scholar 

  35. Gerbal, F., Chaikin, P., Rabin, Y., Prost, J.: An elastic analysis of Listeria monocytogenes propulsion. Biophys. J. 79, 2259–2275 (2000)

    Google Scholar 

  36. Gong, H., Guo, Y., Linstedt, A., Schwartz, R.: Discrete, continuous and stochastic models of protein sorting in the Golgi. Phys. Rev. E 81, 011914 (2010)

    Google Scholar 

  37. Gopalakrishnan, M., Govindan, B.S.: A first-passage-time theory for search and capture of chromosomes by microtubules in mitosis. Bull. Math. Biol. 73, 2483–2506 (2011)

    MathSciNet  Google Scholar 

  38. Goshima, G., Scholey, J.M.: Control of mitotic spindle length. Annu. Rev. Cell Dev. Biol. 26, 21–57 (2010)

    Google Scholar 

  39. Goshima, G., Wollman, R., Stuurman, N., Scholey, J.M., Vale, R.D.: Length control of the metaphase spindle. Curr. Biol. 15, 1979–1988 (2005)

    Google Scholar 

  40. Govindan, B.S., Gopalakrishnan, M., Chowdhury, D.: Length control of microtubules by depolymerizing motor proteins. Europhys. Lett. 83, 40006 (2008)

    Google Scholar 

  41. Grill, S.W., Kruse, K., Julicher, F.: Theory of mitotic spindle oscillations. Phys. Rev. Lett. 94, 108104 (2005)

    Google Scholar 

  42. Gupta, M.L., Carvalho, P., Roof, D.M., Pellman, D.: Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nat. Cell Biol. 8, 913–923 (2006)

    Google Scholar 

  43. Heinrich, R., Rapoport, T.A.: Generation of nonidentical compartments in vesicular transport systems. J. Cell Biol. 168, 271–280 (2005)

    Google Scholar 

  44. Hill, T.L.: Theoretical problems related to the attachment of microtubules to kinetochores. Proc. Natl. Acad. Sci. USA 82, 4404–4408 (1985)

    Google Scholar 

  45. Holmes, W.R., Edelstein-Keshet, L.: A comparison of computational models for eukaryotic cell shape and motility. PLoS Comput. Biol. 8, e1002793 (2012)

    MathSciNet  Google Scholar 

  46. Holy, T.E., Leibler, S.: Dynamic instability of microtubules as an efficient way to search in space. Proc. Natl. Acad. Sci. USA 91, 5682–5685 (1994)

    Google Scholar 

  47. Hough, L.E., Schwabe, A., Glaser, M.A., McIntosh, J.R. Betterton, M.D.: Microtubule depolymerization by the kinesin-8 motor Kip3p: a mathematical model. Biophys. J. 96, 3050–3064 (2009)

    Google Scholar 

  48. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer, Sunderland (2001)

    Google Scholar 

  49. Inoue, S., Salmon, E.D.: Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Cell Biol. 6 1619–1640 (1995)

    Google Scholar 

  50. Joglekar, A.P., Hunt, A.J.: A Simple, mechanistic model for directional instability during mitotic chromosome movements. Biophys. J. 83, 42–58 (2002)

    Google Scholar 

  51. Johann, D., Erlenkamper, C., Kruse, K.: Length regulation of active biopolymers by molecular motors. Phys. Rev. Lett. 108, 258103 (2012)

    Google Scholar 

  52. Katsura, I.: Determination of bacteriophage λ tail length by a protein ruler. Nature 327, 73–75 (1987)

    Google Scholar 

  53. Keener, J.P.: How Salmonella typhimurium measures the length of flagellar filaments. Bull. Math. Biol. 68, 1761–1778 (2006)

    MathSciNet  Google Scholar 

  54. Keren, K., Pincus, Z., Allen, G.M., Barnhart, E.L., Marriott, G., Mogilner, A., Theriot, J.A.: Mechanism of shape determination in motile cells. Nature 453, 475–481 (2008)

    Google Scholar 

  55. Kirschner, M., Mitchison, T.: Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329–342 (1986)

    Google Scholar 

  56. Klann, M., Koeppl, H., Reuss, M.: Spatial modeling of vesicle transport and the cytoskeleton: the challenge of hitting the right road. PLoS One 7, e29645 (2012)

    Google Scholar 

  57. Kuan, H.-S., Betterton, M.D.: Biophysics of filament length regulation by molecular motors. Phys. Biol. 10, 036004 (2013)

    Google Scholar 

  58. Lauffenburger, D.A.: Receptors: Models for Binding, Trafficking, and Signaling. Oxford University Press, Oxford (1996)

    Google Scholar 

  59. Lefebvre, P.A., Rosenbaum, J.L.: Regulation of the synthesis and assembly of ciliary and flagellar proteins during regeneration. Annu. Rev. Cell Biol. 2, 517–546 (1986)

    Google Scholar 

  60. Lippincott-Schwartz, J., Phair, R.D.: Lipids and cholesterol as regulators of traffic in the endomembrane system. Annu. Rev. Biophys. 39, 559–578 (2010)

    Google Scholar 

  61. Lippincott-Schwartz, J., Roberts, T.H., Hirschberg, K.: Secretory protein trafficking abd organelle dynamics in living cells. Annu. Rev. Cell Dev. Biol. 16, 557–589 (2000)

    Google Scholar 

  62. Liu, J., Deasi, A., Onunchic, J.N., Hwa, T.: An integrated mechanobiochemical feedback mechanism describes chromosome motility from prometaphase to anaphase in mitosis. Proc. Natl. Acad. Sci. USA 105, 13752–13757 (2008)

    Google Scholar 

  63. Maly, I.V., Borisy, G.G.: Self-organization of a propulsive actin network as an evolutionary process. Proc. Natl. Acad. Sci. USA 98, 11324–11329 (2001)

    Google Scholar 

  64. Marcy, Y., Prost, J., Carlier, M.F., Sykes, C.: Forces generated during actin-based propulsion: a direct measurement by micromanipulation. Proc. Natl. Acad. Sci. USA 20, 5992–5997 (2004)

    Google Scholar 

  65. Maree, A.F., Jilkine, A., Dawes, A., Grieneisen, V.A., Edelstein-Keshet, L.: Polarization and movement of keratocytes: a multiscale modelling approach. Bull. Math. Biol. 68, 1169–1211 (2006)

    Google Scholar 

  66. Marshall, W.F., Rosenbaum, J.L.: Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J. Cell Biol. 155, 405–414 (2001)

    Google Scholar 

  67. Marshall, W.F., Qin, H., Rodrigo Brenni, M., Rosenbaum, J.L.: Flagellar length control system: testing a simple model based on intraflagellar transport and turnover. Mol. Biol. Cell 16, 270–278 (2005)

    Google Scholar 

  68. McIntosh, J.R., Molodtsov, M.I., Ataullakhanov, F.I.: Biophysics of mitosis. Q. Rev. Biophys. 45, 147–207 (2012)

    Google Scholar 

  69. Mclean, D.R., Graham, B.P.: Mathematical formulation and analysis of a continuum model for tubulin-driven neurite elongation. Proc. Roy. Soc. Lond. A 460, 2437–2456 (2004)

    MathSciNet  MATH  Google Scholar 

  70. Melbinger, A., Reese, L., Frey, E.: Microtubule length regulation by molecular motors. Phys. Rev. Lett. 108, 258104 (2012)

    Google Scholar 

  71. Misteli, T.: Self-organization in cell architecture. J. Cell Biol. 155, 181–186 (2001)

    Google Scholar 

  72. Mitchison, T.J.: Self-organization of polymer-motor systems in the cytoskeleton. Phil. Trans. Roy. Soc. Lond. B Biol. Sci. 336, 99–106 (1992)

    Google Scholar 

  73. Mogilner, A.: Mathematics of cell motility: have we got its number? J. Math. Biol. 58, 105–134 (2009)

    MathSciNet  MATH  Google Scholar 

  74. Mogilner, A., Craig, E.: Towards a quantitative understanding of mitotic spindle assembly and mechanics. J. Cell Sci. 123, 3435–3445 (2010)

    Google Scholar 

  75. Mogilner, A., Edelstein-Keshet, L.: Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys. J. 83, 1237–1258 (2002)

    Google Scholar 

  76. Mogilner, A., Oster, G.: Cell motility driven by actin polymerization. Biophys. J. 71, 3030–3045 (1996)

    Google Scholar 

  77. Mogilner, A., Oster, G.: Force generation by actin polymerization II: the elastic ratchet and tethered filaments. Biophys. J. 84, 1591–1605 (2003)

    Google Scholar 

  78. Mogilner, A., Wollman, R., Civelekoglu-Sholey, G., Scholey, J.: Trends Cell Biol. 16, 89–96 (2006)

    Google Scholar 

  79. Mullins, R.D., Heuser, J.A., Pollard, T.D.: The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl. Acad. Sci. USA 95, 6181–6186 (1998)

    Google Scholar 

  80. Nedelec, F., Surrey, T., Maggs, A.C., Leibler, S.: Self-organization of microtubules and motors. Nature 389, 305–308 (1997)

    Google Scholar 

  81. Parmeggiani, A., Franosch, T., Frey, E.: Phase coexistence in driven one-dimensional transport. Phys. Rev. Lett. 90, 086601 (2003)

    Google Scholar 

  82. Parsons, J.T., Horwitz, A.R., Schwartz, M.A.: Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010)

    Google Scholar 

  83. Perelson, A.P., Coutsias, E.A.: A moving boundary model of acrosomal elongation. J. Math. Biol. 23, 361–379 (1986)

    MathSciNet  MATH  Google Scholar 

  84. Peskin, C.P., Odell, G.M., Oster, G.F.: Cellular motions and thermal fluctuations: the brownian ratchet. Biophys. J. 65, 316–324 (1993)

    Google Scholar 

  85. Pollard, T.D., Borisy, G.G.: Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003)

    Google Scholar 

  86. Rafelski, S.M., Marshall, W.F.: Building the cell: design principles of cellular architecture. Mol. Cell Biol. 9, 593–603 (2008)

    Google Scholar 

  87. Rafelski, S.M., Theriot, J.A.: Crawling toward a unified model of cell motility: spatial and temporal regulation of actin dynamics. Annu. Rev. Biochem. 73, 209–239 (2004)

    Google Scholar 

  88. Reese, L., Melbinger, A., Frey, E.: Crowding of molecular motors determines microtubule depolymerization Biophys. J. 101, 2190–2200 (2011)

    Google Scholar 

  89. Rieder, C.L., Salmon, E.D.: Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J. Cell Biol. 124, 223–233 (1994)

    Google Scholar 

  90. Rzadzinska, A.K., Schneider, M.E., Davies, C., Riordan, G.P., Kachar, B.: An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewal. J. Cell Biol. 164, 887–897 (2004)

    Google Scholar 

  91. Schaus, T.E., Borisy, G.G.: Performance of a population of independent filaments in lamellipodial protrusion. Biophys. J. 95, 1393–1411(2008)

    Google Scholar 

  92. Scholey, J.M.: Intraflagellar transport. Annu. Rev. Cell Dev. Biol. 19, 423–443 (2003)

    Google Scholar 

  93. Shtylla, B., Keener, J.P.: A mechanomolecular model for the movement of chromosomes during mitosis driven by a minimal kinetochore bicyclic cascade. J. Theor. Biol. 263, 455–70 (2010)

    MathSciNet  Google Scholar 

  94. Shtylla, B., Keener, J.P.: A mathematical model for force generation at the kinetochore-microtubule interface. SIAM J. Appl. Math. 71, 1821–1848 (2011)

    MathSciNet  MATH  Google Scholar 

  95. Skibbens, R.V., Petrie-Skeen,V., Salmon, E.D.: Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push pull mechanism. J. Cell Biol. 122, 859–875 (1993)

    Google Scholar 

  96. Sprague, B.L., Pearson, C.G., Maddox, P.S., Bloom, K.S., Salmon, E.D., Odde, D.J.: Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle. Biophys. J. 84, 1–18 (2003)

    Google Scholar 

  97. Stephens, R.E.: Quantal tektin synthesis and ciliary length in sea-urchin embryos. J. Cell Sci. 92, 403–413 (1989)

    Google Scholar 

  98. Sutradhar, S., Paul, R.: Tug-of-war between opposing molecular motors explains chromosomal oscillation during mitosis. J. Theor. Biol. 334, 56–69 (2014)

    Google Scholar 

  99. Theriot, J.A., Mitchison, T.J., Tilney, L.G., Portnoy, D.A.: The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature. 357, 257–260 (1992)

    Google Scholar 

  100. Tilney, L.G., Portnoy, D.A.: Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597–1608 (1989)

    Google Scholar 

  101. Tischer, C., ten Wolde, P.R., Dogterom, M.: Providing positional information with active transport on dynamic microtubules. Biophys. J. 99, 726–35 (2010)

    Google Scholar 

  102. Varga, V., et al.: Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat. Cell Biol. 8, 957–962 (2006)

    Google Scholar 

  103. Vicente-Manzanares, M., Choi, C.K., Horwitz, A.R.: Integrins in cell migration—the actin connection. J. Cell Sci. 122, 199–206 (2009)

    Google Scholar 

  104. Welf, E.S., Johnson, H.E., Haugh, J.M.: Bidirectional coupling between integrin-mediated signaling and actomyosin mechanics explains matrix-dependent intermittency of leading-edge motility. Mol. Biol. Cell 24, 3945–3955 (2013)

    Google Scholar 

  105. Wollman, R., Cytynbaum, E.N., Jones, J.T., Meyer, T., Scholey, J.M., Mogilner, A.: Efficient chromosome capture requires a bias in the ‘search-and-capture’ process during mitotic-spindle assembly. Curr. Biol. 15, 828–832 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bressloff, P.C. (2014). Self-Organization in Cells I: Active Processes. In: Stochastic Processes in Cell Biology. Interdisciplinary Applied Mathematics, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-319-08488-6_8

Download citation

Publish with us

Policies and ethics