Skip to main content

Cryosols and Earth-System Sciences

  • Chapter
  • First Online:
Cryopedology

Part of the book series: Progress in Soil Science ((PROSOIL))

  • 666 Accesses

Abstract

Cryosols have played an important role in understanding Earth’s systems, including relative dating of soil parent materials, correlating geologic deposits, understanding glacier dynamics, reconstructing past environments, preservation of artefacts and microorganisms, detecting paleo-human occupation sites, predicting soils and geomorphic surfaces on extraterrestrial planets such as Mars, and determining whether or not high level lakes existed during the early Holocene in the McMurdo Dry Valleys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackert RP Jr, Kurz MD (2004) Age and uplift rates of Sirius Group sediments in the Dominion Range, Antarctica, from surface exposure dating and geomorphology. Global Planet Change 42:207–225

    Article  Google Scholar 

  • Anderson DM, Gatto LW, Ugolini FC (1972) An Antarctic analog of Martian permafrost terrain. Antarct J US 7:114–115

    Google Scholar 

  • Berkley JL, Drake MJ (1981) Weathering of Mars: Antarctic analog studies. Icarus 45:231–249

    Article  Google Scholar 

  • Blankholm HP (2009) Long-term research and cultural resource management strategies in light of climate change and human impact. Arctic Anthropol 46:17–24

    Article  Google Scholar 

  • Bockheim JG (1980) Solution and use of chronofunctions in studying soil development. Geoderma 23:71–85

    Article  Google Scholar 

  • Bockheim JG (1990) Soil development rates in the Transantarctic Mountains. Geoderma 47:59–77

    Article  Google Scholar 

  • Bockheim JG (2007) Soil processes and development rates in the Quartermain Mountains, upper Taylor Glacier region, Antarctica. Geogr Ann 89A:153–165

    Article  Google Scholar 

  • Bockheim JG (2010a) Evolution of desert pavements and the vesicular layer in soils of the Transantarctic Mountains. Geomorphology 118:433–443

    Article  Google Scholar 

  • Bockheim JG (2010b) Soil preservation and ventifact recycling from dry-based glaciers in Antarctica. Antarct Sci 22:409–417

    Article  Google Scholar 

  • Bockheim JG (2013) Soil formation in the Transantarctic Mountains from the middle Paleozoic to the Anthropocene. Palaeogeogr Palaeoclimatol Palaeoecol 381–382:98–109

    Article  Google Scholar 

  • Bockheim JG, Hinkel KM (2007) The importance of “deep” organic carbon in permafrost-affected soils of arctic Alaska. Soil Sci Soc Am J 71:1889–1892

    Article  Google Scholar 

  • Bockheim JG, McLeod M (2006) Soil formation in Wright Valley, Antarctica since the late Neogene. Geoderma 137:109–116

    Article  Google Scholar 

  • Bockheim JG, McLeod M (2013) Glacial geomorphology of the Victoria Valley system, Ross Sea Region, Antarctica. Geomorphology 193:14–24

    Article  Google Scholar 

  • Bockheim JG, Wilson SC (1993) Soil-forming rates and processes in cold desert soils of Antarctica. In: Gilichinsky DG (ed) Cryosols: the effects of cryogenesis on the processes and pecularities of soil formation. Proceedings of the 1st international conference on cryopedology. Russian Academy of Sciences, Pushchino, Moscow region, pp 42–55

    Google Scholar 

  • Bockheim JG, Hinkel KM, Eisner WR, Dai XY (2004) Carbon pools and accumulation rates in an age-series of soils in drained thaw-lake basins, arctic Alaska. Soil Sci Soc Am J 68:697–704

    Article  Google Scholar 

  • Bockheim JG, Campbell IB, McLeod M (2008) Use of soil chronosequences for testing the existence of high-water-level lakes in the McMurdo Dry Valleys, Antarctica. Catena 74:144–152

    Article  Google Scholar 

  • Bockheim JG, Kurz MD, Soule SA, Burke A (2009) Genesis of active sand-filled polygons in lower and central Beacon Valley, Antarctica. Permafr Periglac Process 20:295–308

    Article  Google Scholar 

  • Brook EJ, Kurz MD, Ackert R Jr, Denton GH, Brown ET, Raisbeck GM, Yiou E (1993) Chronology of Taylor Glacier advances in Arena Valley, Antarctica, using in-situ cosmogenic 3He and 10Be. Quatern Res 39:11–23

    Article  Google Scholar 

  • Buckland PI, Eriksson E, Linderholm J, Viklund K, Engelmark R, Palm F, Svensson P, Buckland P, Panagiotakopulu E, Olofsson J (2011) Integrating human dimensions of Arctic palaeoenvironmental science: SEAD – the strategic environmental archaeology database. J Archaeol Sci 38:345–351

    Article  Google Scholar 

  • Denton GH, Bockheim JG, Wilson SC, Stuiver M (1989) Late Wisconsin and early Holocene glacial history, inner Ross Embayment, Antarctica. Quatern Res 31:151–182

    Article  Google Scholar 

  • Derry AM, Kevan PG, Rowley SDM (1999) Soil nutrients and vegetation characteristics of a Dorset/Thule site in the Canadian Arctic. Arctic 52:204–213

    Article  Google Scholar 

  • Dickinson WW, Rosen MR (2003) Antarctic permafrost: an analogue for water and diagenetic minerals on Mars. Geology 31:199–202

    Article  Google Scholar 

  • Epov MI, Balkov EV, Chemyakina MA, Manshtein AK, Manshtein YU, Napreev DV, Kovbasov KV (2012) Frozen mounds in Gorny Altai: geophysical and geochemical studies. Russ Geol Geophys 53:583–593

    Article  Google Scholar 

  • Gilichinsky DA, Wilson GS, Friedmann EI, 20 co-authors (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7:275–311

    Google Scholar 

  • Hall BL, Denton GH (2005) Surficial geology and geomorphology of eastern and central Wright Valley, Antarctica. Geomorphology 64:25–65

    Article  Google Scholar 

  • Hall BL, Denton GH, Hendy CH (2000) Evidence from Taylor Valley for a grounded ice sheet in the Ross Sea, Antarctica. Geograf Annaler 82A:275–303

    Article  Google Scholar 

  • Hall BL, Denton GH, Overturf B (2001) Glacial Lake Wright, a high-level Antarctic lake during the LGM and early Holocene. Antarct Sci 13:53–60

    Article  Google Scholar 

  • Hall BL, Denton GH, Overturf B, Hendy CH (2002) Glacial Lake Victoria, a high-level Antarctic lake inferred from lacustrine deposits in Victoria Valley. J Quat Sci 17:697–706

    Article  Google Scholar 

  • Head JW, Kreslavsky MA, Marchant DR (2011) Pitted rock surfaces on Mars: a mechanism of formation by transient melting of snow and ice. J Geophys Res 116:E09007. doi:10.1029/2011JE003826

  • Heldmann JL, Pollard W, McKay CP, Marinova MM, Davila A, Williams KE, Lacelle D, Andersen DT (2013) the high elevation dry valleys in Antarctica as analog sites for subsurface ice on Mars. Planet Space Sci 85:53–58

    Article  Google Scholar 

  • Higgins SM, Hendy CH, Denton GH (2000) Geochronology of Bonney drift, Taylor Valley, Antarctica: evidence for interglacial expansions of Taylor Glacier. Geogr Ann 82A:391–409

    Article  Google Scholar 

  • Hinkel KM, Eisner WR, Bockheim JG, Nelson FE, Peterson KM, Dai X (2003) Spatial extent, age and carbon stocks in drained thaw lake basins on the Barrow Peninsula, Alaska. Arctic Antarct Alp Res 35:291–300

    Article  Google Scholar 

  • Jenny H (1941) Factors of soil formation. McGraw-Hill, NY

    Google Scholar 

  • Mahaney WC, Hart KM, Dohm JM, Hancock RGV, Costa P, O’Reilly SS, Kelleher BP, Schwartz S, Lanson B (2011) Aluminum extracts in Antarctic paleosols: proxy data for organic compounds and bacteria and implications for Martian paleosols. Sedim Geol 237:84–94

    Article  Google Scholar 

  • Marchant DR, Denton GH, Swisher CC III (1993) Miocene-Pliocene Pleistocene glacial history of Arena Valley, Quartermain Mountains, Antarctica. Geogr Ann 75A:269–302

    Article  Google Scholar 

  • Mellon MT, Malin MC, Arvidson RE, Searls ML, Sizemore HG, Heet TL, Lemmon MT, Keller HU, Marshall J (2009) The periglacial landscape at the Phoenix land sites. J Geophys Res 114. doi:10.1029/2009JE003418

  • Morris EC, Holt HE, Mutch TA, Lindsay JG (1972) Mars analog studies in Wright and Victoria Valleys, Antarctica. Antarct J US 7:113–114

    Google Scholar 

  • Retallack GJ, Krull ES, Bockheim JG (2002) New grounds for reassessing paleoclimate of the Sirius Group, Antarctica. J Geol Soc (Lond) 158:925–933

    Article  Google Scholar 

  • Salvatore MR, Mustard JF, Head JW, Cooper RF, Marchant DR, Wyatt MB (2013) Development of alteration rinds of oxidative weathering processes in Beacon Valley, Antarctica, and implications for Mars. Geochim Cosmochim Acta 115:137–161

    Article  Google Scholar 

  • Villagran XS, Schaefer CEGR, Ligouis B (2013) Living in the cold: geoarchaeology of sealing sites from Byers Peninsula (Livingston Island, Antarctica). Quat Int 315:184–199

    Article  Google Scholar 

  • Wilch TI, Denton GH, Lux DR, McIntosh WC (1993) Limited Pliocene glacier extent and surface uplift in middle Taylor Valley, Antarctica. Geogr Ann 75A:331–351

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Bockheim, J.G. (2015). Cryosols and Earth-System Sciences. In: Cryopedology. Progress in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-319-08485-5_11

Download citation

Publish with us

Policies and ethics