Skip to main content

Physicists’ Approaches to a Few Economic Problems

  • Chapter
  • First Online:

Part of the book series: New Economic Windows ((NEW))

Abstract

We review some of the recent approaches and advances made by physicists in some selected problems in economics, given that this interdisciplinary field popularly called “Econophysics” is now two decades old. These approaches, mainly originating from statistical physics, have not been free of drawbacks and criticisms, but we intend to discuss these advancements and highlight some of the promising aspects of this research. We hope the readers will be able to judge the positive impact that these efforts have created; perhaps even improve the methods and the results or remove the shortcomings, and eventually strengthen the field with their inputs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The term was coined by the American physicist, H. Eugene Stanley, in a conference on statistical physics in Kolkata (erstwhile Calcutta) in 1995, and first appeared in its proceedings published in the Journal Physica A (1996).

  2. 2.

    The term was first used by the French physicist, S. Galam, and appeared in an article published in 1982.

  3. 3.

    We often use for simplicity the terms “equilibrium” or “steady state” interchangeably, though for systems that are “non-ergodic”, strictly speaking one should only use the term “steady state”.

  4. 4.

    This consists of the net value of assets (financial holdings and/or tangible items) owned at a given instant.

  5. 5.

    This is believed to be consistent with the general observation that, in market economies, wealth is much more unequally distributed than income [46].

  6. 6.

    Self-organization also occurs in other market models when there is restriction in the commodity market [63].

  7. 7.

    Note that banks are not included in the side of firms, even if they are borrowing from other banks. Because our dataset includes banks’ borrowing only partially, the interbank credit is not considered here, though it is no less important than the bank-firm credit studied here.

  8. 8.

    The National Tax Agency Annual Statistics Report. Other major sources are Establishment and Enterprise Census by the Ministry of Internal Affairs and Communications, and the Ministry of Justice’s records on the entry and exit of firms, which are said to have under—or over-estimation problems due to the counting of non-active firms and so forth.

References

  1. R.N. Mantegna, H.E. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  2. J.-P. Bouchaud, M. Potters, Theory of Financial Risk and Derivative Pricing (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  3. S. Sinha, A. Chatterjee, A. Chakraborti, B.K. Chakrabarti, Econophysics: An Introduction (Wiley, Berlin, 2011)

    Google Scholar 

  4. B.M. Roehner, Patterns of Speculation: A Study in Observational Econophysics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  5. U. Garibaldi, E. Scalas, Finitary Probabilistic Methods in Econophysics (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  6. H. Aoyama, Y. Fujiwara, Y. Ikeda, H. Iyetomi, W. Souma, Econophysics and Companies: Statistical Life and Death in Complex Business Networks (Cambridge University Press, New York, 2011)

    Google Scholar 

  7. B.K. Chakrabarti, A. Chakraborti, S.R. Chakravarty, A. Chatterjee, Econophysics of Income and Wealth Distributions (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  8. B. K. Chakrabarti, A. Chakraborti, A. Chatterjee (eds.), Econophysics and Sociophysics: Trends and Perspectives (Wiley, Weinheim 2006)

    Google Scholar 

  9. F. Abergel, H. Aoyama, B.K. Chakrabarti, A. Chakraborti, A. Ghosh (eds.), Econophysics of Agent-Based Models (Springer International Publishing, Switzerland, 2014)

    Google Scholar 

  10. F. Abergel, B.K. Chakrabarti, A. Chakraborti, A. Ghosh (eds.), Econophysics of Systemic Risk and Network Dynamics (Springer, Milan, 2012)

    Google Scholar 

  11. F. Abergel, B.K. Chakrabarti, A. Chakraborti, M. Mitra (eds.), Econophysics of Order-Driven Markets (Springer, Milan, 2011)

    MATH  Google Scholar 

  12. L. Pareschi, G. Naldi, G. Toscani (eds.), Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences (Birkhauser, Berlin, 2010)

    MATH  Google Scholar 

  13. B. Basu, B.K. Chakrabarti, S.R. Chakravarty, K. Gangopadhyay (eds.), Econophysics and Economics of Games, Social Choices and Quantitative Techniques (Springer, Milan, 2010)

    MATH  Google Scholar 

  14. A. Chatterjee, B.K. Chakrabarti (eds.), Econophysics of Markets and Business Networks (Springer, Milan, 2007)

    Google Scholar 

  15. A. Chatterjee, B.K. Chakrabarti (eds.), Econophysics of Stock and Other Markets (Springer, Milan, 2006)

    MATH  Google Scholar 

  16. A. Chatterjee, S. Yarlagadda, B.K. Chakrabarti (eds.), Econophysics of Wealth Distributions (Springer, Milan, 2005)

    Google Scholar 

  17. V. Yakovenko, J. Barkley Rosser Jr, Colloquium: statistical mechanics of money, wealth and income. Rev. Mod. Phys. 81, 1703 (2009)

    ADS  Google Scholar 

  18. A. Chakraborti, I. Muni Toke, M. Patriarca, F. Abergel, Econophysics: I. Empirical facts. Quant. Financ. 11:7, 991 (2011)

    MathSciNet  Google Scholar 

  19. A. Chakraborti, I. Muni Toke, M. Patriarca, F. Abergel, Econophysics: II. Agent-based models. Quant. Financ. 11:7, 1013 (2011)

    MathSciNet  Google Scholar 

  20. A. Chakraborti, M. Patriarca, Variational principle for the pareto power law. Phys. Rev. Lett. 103, 228701 (2009)

    ADS  Google Scholar 

  21. A. Sen, Poverty and Famines (Oxford University Press, New Delhi, 1999)

    Google Scholar 

  22. M. Foucault, Le Pouvoir psychiatrique:Cours au College de France 1973–74 (Gallimard, Paris, 2003)

    Google Scholar 

  23. R. Scruton, Thinkers of the New Left (Claridge Press, Longman, 1988)

    Google Scholar 

  24. J. Rawls, A Theory of Justice (Harvard University Press, Cambridge, 1971)

    Google Scholar 

  25. P. Aghion, E. Caroli, C. Garca-Pealosa, Inequality and economic growth: the perspective of the new growth theories. J. Econ. Lit. 37, 1615 (1999)

    Google Scholar 

  26. R. Barro, Inequality, Growth, and Investment, Working Paper 7038, National Bureau of Economic Research (1999)

    Google Scholar 

  27. R. Benabou, Human capital, inequality, and growth: a local perspective. Eur. Econ. Rev. 38, 817 (1994)

    Google Scholar 

  28. K. Forbes, A reassessment of the relationship between inequality and growth. Am. Econ. Rev. 90, 869 (2000)

    Google Scholar 

  29. A. Alesina, D. Rodrik, Distribution, political conflict, and economic growth: a simple theory and some empirical evidence, in Political Economy, Growth and Business Cycles, ed. by A. Cukierman, Z. Hercowitz, L. Leiderman (MIT Press, Cambridge, 1992)

    Google Scholar 

  30. R. Benabou, Unequal societies: income distribution and the social contract. Am. Econ. Rev. 90, 96 (2000)

    Google Scholar 

  31. A. Alesina, R. Perotti, Income distribution, political instability, and investment. Eur. Econ. Rev. 40, 1203 (1996)

    Google Scholar 

  32. J. Blau, P. Blau, The cost of inequality: metropolitan structure and violent crime. Am. Soc. Rev. 47, 114 (1982)

    Google Scholar 

  33. V. Pareto, Cours dfeconomie politique (Rouge, Lausanne, 1897)

    Google Scholar 

  34. R. Gibrat, Les Ingalites conomiques (Libraire du Recueil Sirey, Paris, 1931)

    Google Scholar 

  35. D. Champernowne, A model of income distribution. Econ. J. 63, 318 (1953)

    Google Scholar 

  36. D. Champernowne, F. Cowell, Economic Inequality and Income Distribution (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  37. E. Montroll, M. Shlesinger, On 1/f noise and other distributions with long tails. Proc. Natl. Acad. Sci. 79, 3380 (1982)

    ADS  MATH  MathSciNet  Google Scholar 

  38. C. Gini, Measurement of inequality of incomes. Econ. J. 31, 124 (1921)

    Google Scholar 

  39. R. Hogg, J. Mckean, A. Craig, Introduction to Mathematical Statistics (Pearson Education, Delhi, 2007)

    Google Scholar 

  40. A. Chatterjee, S. Yarlagadda, B.K. Chakrabarti (eds.), Econophysics of Wealth Distributions, New Economic Windows Series (Springer, Milan, 2005)

    Google Scholar 

  41. A. Chatterjee, B.K. Chakrabarti, Kinetic exchange models for income and wealth distributions. Eur. Phys. J. B 60, 135 (2007)

    ADS  Google Scholar 

  42. H. Aoyama, Y. Nagahara, M. Okazaki, W. Souma, H. Takayasu, M. Takayasu, Pareto’s law for income of individuals and debt of Bankrupt companies. Fractals 8, 293 (2000)

    Google Scholar 

  43. S. Sinha, Evidence for power-law tail of the wealth distribution in India. Phys. A 359, 555 (2006)

    Google Scholar 

  44. P. Richmond, S. Hutzler, R. Coelho, P. Repetowicz, A review of empirical studies and models of income distributions in society, in Econophysics and Sociophysics: Trends and Perspectives, ed. by B.K. Chakrabarti, A. Chakraborti, A. Chatterjee (Wiley, Weinheim, 2006)

    Google Scholar 

  45. A. Salem, T. Mount, A convenient descriptive model of income distribution: the gamma density. Econometrica 42, 1115 (1974)

    Google Scholar 

  46. P.A. Samuelson, Economics (McGraw Hill, Auckland, 1998)

    Google Scholar 

  47. R. Axtell, Zipf distribution of U.S. firm sizes. Science 293, 1818 (2001)

    ADS  Google Scholar 

  48. A. Chakraborti, B.K. Chakrabarti, Statistical mechanics of money: how saving propensity affects its distribution. Eur. Phys. J. B 17, 167 (2000)

    ADS  Google Scholar 

  49. A. Chatterjee, B.K. Chakrabarti, S. Manna, Money in gas-like markets: Gibbs and Pareto laws. Phys. Scr. T106, 36 (2003)

    ADS  Google Scholar 

  50. A. Chatterjee, B.K. Chakrabarti, S. Manna, Pareto law in a kinetic model of market with random saving propensity. Phys. A 335, 155 (2004)

    MathSciNet  Google Scholar 

  51. B.K. Chakrabarti, A. Chatterjee, Ideal gas-like distributions in economics: effects of savings propensity, in Applications of Econophysics, ed. by H. Takayasu (Springer, Tokyo, 2004)

    Google Scholar 

  52. M. Patriarca, A. Chakraborti, Kinetic exchange models: from molecular physics to social science. Am. J. Phys. 81, 618 (2013)

    ADS  Google Scholar 

  53. A. Drăgulescu, V. Yakovenko, Statistical mechanics of money. Eur. Phys. J. B 17, 723 (2000)

    ADS  Google Scholar 

  54. S. Ispolatov, P.L. Krapivsky, S. Redner, Wealth distributions in asset exchange models. Eur. Phys. J. B 2, 267 (1998)

    ADS  Google Scholar 

  55. E. Bennati, La simulazione statistica nell’analisi della distribuzione del reddito: modelli realistici e metodo di Monte Carlo (ETS Editrice, Pisa, 1988)

    Google Scholar 

  56. E. Bennati, Un metodo di simulazione statistica nell’analisi della distribuzione del reddito. Riv. Internazionale di Sci. Econ. e Commerciali 35, 735 (1988)

    Google Scholar 

  57. E. Bennati, Il metodo Monte Carlo nell’analisi economica, Rassegna di lavori dell’ISCO X, 31 (1993)

    Google Scholar 

  58. J. Angle, The surplus theory of social stratification and the size distribution of personal wealth, in Proceedings of the American Social Statistical Association, Social Statistics Section, (Alexandria, VA 1983), p. 395

    Google Scholar 

  59. J. Angle, The surplus theory of social stratification and the size distribution of personal wealth. Soc. Forces 65, 293 (1986)

    Google Scholar 

  60. J. Angle, The statistical signature of pervasive competition on wage and salary incomes. J. Math. Soc. 26, 217 (2002)

    MATH  Google Scholar 

  61. J. Angle, The inequality process as a wealth maximizing process. Phys. A 367, 388 (2006)

    Google Scholar 

  62. A. Chakrabarti, B.K. Chakrabarti, Microeconomics of the ideal gas like market models. Phys. A 388, 4151 (2009)

    Google Scholar 

  63. A. Chakraborti, S. Pradhan, B.K. Chakrabarti, A self-organising model of market with single commodity. Physica A 297, 253–259 (2001)

    ADS  MATH  Google Scholar 

  64. M. Patriarca, A. Chakraborti, K. Kaski, Statistical model with a standard gamma distribution. Phys. Rev. E 70, 016104 (2004)

    ADS  Google Scholar 

  65. K. Bhattacharya, G. Mukherjee, S.S. Manna, Detailed simulation results for some wealth distribution models in econophysics, in Econophysics of Wealth Distributions, ed. by A. Chatterjee, S. Yarlagadda, B.K. Chakrabarti (Springer, 2005), pp. 111–119

    Google Scholar 

  66. P. Repetowicz, S. Hutzler, P. Richmond, Dynamics of money and income distributions. Phys. A 356, 641 (2005)

    MathSciNet  Google Scholar 

  67. M. Lallouache, A. Jedidi, A. Chakraborti, Wealth distribution: To be or not to be a Gamma?, Science and Culture, vol 76 (Kolkata, India, 2010), p. 478

    Google Scholar 

  68. B.K. Chakrabarti, S. Marjit, Self-organisation and complexity in simple model systems: game of life and economics. Indian J. Phys. B 69, 681 (1995)

    Google Scholar 

  69. B. Hayes, Follow the money. Am. Sci. 90, 400 (2002)

    Google Scholar 

  70. M. Patriarca, E. Heinsalu, A. Chakraborti, Basic kinetic wealth-exchange models: common features and open problems. Eur. Phys. J. B 73, 145 (2010)

    ADS  MATH  Google Scholar 

  71. M. Patriarca, A. Chakraborti, Kinetic exchange models: From molecular physics to social science. Am. J. Phys. 81, 618 (2013)

    ADS  Google Scholar 

  72. S. Goswami, A. Chakraborti, Kinetic exchange models in economics and sociology, in Nonlinear Maps and their Applications: Selected Contributions from the NOMA 2013 International Workshop, ed. by R. Lopez-Ruiz, D. Fournier-Prunaret, Y. Nishio, C. Gracio (2015). arXiv:1408.1365v1 [physics.sos-ph]

  73. B. Düring, D. Matthes, G. Toscani, Kinetic equations modelling wealth redistribution: a comparison of approaches. Phys. Rev. E 78, 056103 (2008)

    ADS  MathSciNet  Google Scholar 

  74. G. Toscani, C. Brugna, Wealth redistribution in Boltzmann-like models of conservative economies, in Econophysics and Economics of Games, Social Choices and Quantitative Techniques. New Economic Windows, ed. by B. Basu, S. Chakravarty, B.K. Chakrabarti, K. Gangopadhyay (Springer, Milan, 2010), p. 71

    Google Scholar 

  75. T. Lux, Emergent statistical wealth distributions in simple monetary exchange models: a critical review, in Econophysics of Wealth Distributions. New Economic Windows, ed. by A. Chatterjee, S. Yarlagadda, B.K. Chakrabarti (Springer, Milan, 2005), p. 51

    Google Scholar 

  76. J. Hogan, There’s only one rule for the rich. New Sci. 21 (2005)

    Google Scholar 

  77. M. Gallegati, S. Keen, T. Lux, P. Ormerod, Worrying trends in econophysics. Phys. A 370, 1 (2006)

    MathSciNet  Google Scholar 

  78. T. Lux, F. Westerhoff, Economics crisis. Nat. Phys. 5, 2 (2009)

    Google Scholar 

  79. R.N. Mantegna, H.E. Stanley, Introduction to Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  80. D. Challet, M. Marsili, Y.C. Zhang, Minority Games (Oxford University Press, Oxford, 2005)

    MATH  Google Scholar 

  81. W. Brian Arthur, Inductive reasoning and bounded rationality. Am. Econ. Rev. (Papers and Proc.) 84, 406 (1994)

    Google Scholar 

  82. D. Challet, Y.C. Zhang, Emergence of cooperation and organization in an evolutionary game. Phys. A 246, 407 (1997)

    Google Scholar 

  83. D. Challet, Y.C. Zhang, On the minority game: analytical and numerical studies. Phys. A 256, 514 (1998)

    Google Scholar 

  84. E. Moro, The minority game: an introductory guide, in Advances in Condensed Matter and Statistical Mechanics, ed. by E. Korutcheva, R. Cuerno (Nova Science Publishers, New York, 2004). arXiv:cond-mat/0402651v1 [cond-mat.dis-nn]

  85. W. Kets, The minority game: an economics perspective, preprint: arXiv:0706.4432v1 [q-fin.GN] (2007)

  86. A.S. Chakrabarti, B.K. Chakrabarti, A. Chatterjee, M. Mitra, The Kolkata paise restaurant problem and resource utilization. Phys. A 388, 2420 (2009)

    Google Scholar 

  87. A. Ghosh, A.S. Chakrabarti, B.K. Chakrabarti, Kolkata Paise Restaurant problem in some uniform learning strategy limits, in Econophysics and Economis of Games, Social Choices and Quantitative Techniques. New Economic Windows, ed. by B. Basu, B.K. Chakrabarti, S.R. Chakravarty, K. Gangopadhyay (Springer, Milan, 2010), p. 3

    Google Scholar 

  88. A. Ghosh, A. Chatterjee, M. Mitra, B.K. Chakrabarti, Statistics of the Kolkata Paise Restaurant problem. New J. Phys. 12, 075033 (2010)

    ADS  Google Scholar 

  89. A. Ghosh, S. Biswas, A. Chatterjee, A.S. Chakrabarti, T. Naskar, M. Mitra, B.K. Chakrabarti, Econophysics of systemic risk and network dynamics, in Kolkata Paise Restaurant Problem: An Introduction, New Economic Windows, ed. by F. Abergel, B.K. Chakrabarti, A. Chakraborti, A. Ghosh (Springer, Milan, 2013), p. 173

    Google Scholar 

  90. D. Dhar, V. Sasidevan, B.K. Chakrabarti, Emergent cooperation amongst competing agents in minority games. Phys. A 390, 3477 (2011)

    MathSciNet  Google Scholar 

  91. S. Biswas, A. Ghosh, A. Chatterjee, T. Naskar, B.K. Chakrabarti, Continuous transition of social efficiencies in the stochastic-strategy minority game. Phys. Rev. E 85, 031104 (2012)

    ADS  Google Scholar 

  92. P. Ormerod, Why Most Things Fail (Faber & Faber, London, 2005)

    Google Scholar 

  93. R.L. Axtell, Zipf distribution of U.S. firm sizes. Science 293, 1818 (2001)

    ADS  Google Scholar 

  94. S.N. Durlauf, How can statistical mechanics contribute to social science? Proc. Natl. Acad. Sci. USA 96, 10582 (1999)

    ADS  MATH  MathSciNet  Google Scholar 

  95. S.V. Vikram, S. Sinha, Emergence of universal scaling in financial markets from mean-field dynamics. Phys. Rev. E 83, 016101 (2011)

    ADS  Google Scholar 

  96. T.C. Schelling, Micromotives and Macrobehavior (Norton, New York, 1978)

    Google Scholar 

  97. S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  98. F. Vega-Redondo, Complex Social Networks (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  99. W.B. Arthur, Competing technologies increasing returns, and lock-in by historical events. Econ. J. 99, 116 (1989)

    Google Scholar 

  100. http://www.slate.com/articles/business/the_dismal_science/1998/ 01/the_legend_of_arthur.html

  101. http://www.slate.com/articles/briefing/articles/1998/01/krugmans_life_of_brian.html

  102. A. Ishii, H. Arakaki, N. Matsuda, S. Umemura, T. Urushidani, N. Yamagata, N. Yoshida, The ‘hit’ phenomenon: a mathematical model of human dynamics interactions as a stochastic process. New J. Phys. 14, 063018 (2012)

    ADS  Google Scholar 

  103. M. Mestyan, T. Yasseri, J. Kertesz, Early prediction of movie box office success based on Wikipedia activity big data (2012), arXiv:1211.0970

  104. A. De Vany, W.D. Walls, Uncertainty in the movie industry: does star power reduce the terror of the box office? J. Cult. Econ. 23, 285 (1999)

    Google Scholar 

  105. D. Sornette, D. Zajdenweber, Economic returns of research: the Pareto law and its implications. Eur. Phys. J. B 8, 653 (1999)

    ADS  Google Scholar 

  106. A. De Vany, Hollywood Economics (Routledge, London, 2003)

    Google Scholar 

  107. S. Sinha, S. Raghavendra, Hollywood blockbusters and long-tailed distributions: an empirical study of the popularity of movies. Eur. Phys. J. B 42, 293 (2004)

    ADS  Google Scholar 

  108. R.K. Pan, S. Sinha, The statistical laws of popularity: universal properties of the box office dynamics of motion pictures. New J. Phys. 12, 115004 (2010)

    ADS  Google Scholar 

  109. S. Redner, How popular is your paper? An empirical study of the citation distribution. Eur. Phys. J. B 4, 131 (1998)

    ADS  Google Scholar 

  110. S. Redner, Citation statistics from more than a century of physical review. Phys. Today 58, 49 (2004)

    Google Scholar 

  111. A. De Vany, W.D. Walls, Bose-Einstein dynamics and adaptive contracting in the motion picture industry. Econ. J. 106, 1493 (1996)

    Google Scholar 

  112. S. Fortunato, C. Castellano, Scaling and universality in proportional elections. Phys. Rev. Lett. 99, 138701 (2007)

    ADS  Google Scholar 

  113. F. Radicchi, S. Fortunato, C. Castellano, Universality of citation distributions: toward an objective measure of scientific impact. Proc. Natl. Acad. Sci. USA 105, 17268 (2008)

    ADS  Google Scholar 

  114. F. Wu, B.A. Huberman, Novelty and collective attention. Proc. Natl. Acad. Sci. USA 104, 17599 (2007)

    ADS  Google Scholar 

  115. D. Mayhew, Congressional elections: the case of the vanishing marginals. Polity 6, 295 (1974)

    Google Scholar 

  116. S. Sinha, R.K. Pan, Econophysics and Sociophysics: Trends and Perspectives (Wiley, Weinheim, 2006), p. 417

    Google Scholar 

  117. S. Sinha, S. Raghavendra, Advances in Artificial Economics: The Economy as a Complex Dynamic System (Springer, Berlin, 2006), p. 177

    Google Scholar 

  118. A. Johansen, D. Sornette, Renormalization group analysis of the 2000–2002 anti-bubble in the US S&P 500 index: explanation of the hierarchy of 5 crashes and prediction. Phys. A 276, 338 (2000)

    MathSciNet  Google Scholar 

  119. Z. Dezso, E. Almaas, A. Lukacs, B. Racz, I. Szakadat, A.-L. Barabasi, Dynamics of information access on the web. Phys. Rev. E 73, 066132 (2006)

    ADS  Google Scholar 

  120. D. Sornette, F. Deschatres, T. Gilbert, Y. Ageon, Stochastic gain in population dynamics. Phys. Rev. Lett. 93, 28701 (2004)

    Google Scholar 

  121. R. Crane, D. Sornette, Robust dynamic classes revealed by measuring the response function of a social system. Proc. Natl. Acad. Sci. USA 105, 15649 (2008)

    ADS  Google Scholar 

  122. F. Schweitzer, G. Fagiolo, F. Sornette, F. Vega-Redondo, A. Vespignani, D.R. White, Economic networks: the new challenges. Science 325, 422 (2009)

    ADS  MATH  MathSciNet  Google Scholar 

  123. S. Battiston, M. Puliga, R. Kaushik, P. Tasca, G. Caldarelli, DebtRank: too central to fail? financial networks, the FED and systemic risk, Sci. Rep. 2, (Nature Publishing Group, 2012)

    Google Scholar 

  124. M. Boss, H. Elsinger, M. Summer, S. Thurner, Network topology of the interbank market. Quant. Financ. 4, 677 (2004)

    Google Scholar 

  125. R. Cont, A. Moussa, E.B. Santos, in Network Structure and Systemic Risk in Banking Systems, ed. by e Edson Bastos (2010)

    Google Scholar 

  126. K. Imakubo, Y. Soejima, Network of fund transaction in call money market. Monet. Econ. Stud. 26, (Bank of Japan, 2008)

    Google Scholar 

  127. G. Iori, G. De Masi, O. Precup, G. Gabbi, G. Caldarelli, A Network analysis of the Italian overnight money market, To appear in J. Econ. Dyn. Control (2007)

    Google Scholar 

  128. K. Soramäki, M.L. Bech, J. Arnold, R.J. Glass, W.E. Beyeler, The topology of interbank payment flows. Phys. A 379, 317 (2007)

    Google Scholar 

  129. D. Acemoglu, A. Ozdaglar, A. Tahbaz-Salehi, The network origins of aggregate fluctuations. Econometrica 80, 1977 (2012)

    MATH  MathSciNet  Google Scholar 

  130. A. Foerster, G.S. Pierre-Daniel, M.W. Watson, Sectoral versus aggregate shocks: a structural analysis of industrial production. J. Polit. Econ. 119, 1 (2011)

    Google Scholar 

  131. V.M. Carvalho, Aggregate fluctuations and the network structure of intersectoral trade, Working Paper (2008)

    Google Scholar 

  132. G. Caldarelli, Scale-Free Networks (Oxford University Press, Oxford, 2007)

    MATH  Google Scholar 

  133. F. Abergel, B.K. Chakrabarti, A. Chakraborti, A. Ghosh (eds.), Econophysics of Systemic Risk and Network Dynamics (Springer, Italia, 2012)

    Google Scholar 

  134. Latsis Symposium: Economics on the Move, Trends and Challenges from the Natural Sciences (ETH Zurich, 2012), http://web.sg.ethz.ch/Latsis_2012/main/main.html;. Accessed Jan. 2013

  135. G. De Masi, Y. Fujiwara, M. Gallegati, B. Greenwald, J.E. Stiglitz, An analysis of the Japanese credit network. Evolut. Inst. Econ. Rev. 7, 209 (2011)

    Google Scholar 

  136. Y. Fujiwara, H. Aoyama, Y. Ikeda, H. Iyetomi, W. Souma, Structure and temporal change of the credit network between banks and large firms in Japan. Econ. E-J. 3 (2009) (2009-7) http://www.economics-ejournal.org/economics/ journalarticles/2009-7

  137. Y. Fujiwara, H. Aoyama, Large-scale structure of a nation-wide production network. Eur. Phys. J. B 77, 565 (2010)

    ADS  Google Scholar 

  138. R. Mantegna, Hierarchical structure in financial markets. Eur. Phys. J. B 11, 193 (1999)

    ADS  Google Scholar 

  139. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, J. Wiener, Graph structure in the web. Comput. Netw. 33, 309 (2000)

    Google Scholar 

  140. M.E.J. Newman, The structure and function of complex networks. SIAM Rev. 45, 167 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  141. J.E. Stiglitz, B. Greenwald, Towards a New Paradigm in Monetary Economics (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  142. L. Bachelier, Theorie de la speculation. Annales Scientifique de l’Ecole Normale Superieure III–17, 21 (1900)

    MathSciNet  Google Scholar 

  143. J. Voit, The Statistical Mechanics of Financial Markets (Springer, 2001)

    Google Scholar 

  144. R.N. Mantegna, H.E. Stanley, Scaling behaviour in the dynamics of an economic index. Nature 376, 46 (1995)

    ADS  Google Scholar 

  145. R.F. Engle, Autoregressive conditional heteroskedasticity with estimates of variance of united kingdom inflation. Econometrica 50, 987 (1982)

    MATH  MathSciNet  Google Scholar 

  146. T. Ballerslev, Generalized autoregressive conditional heteroskedasticity. Econometrics 31, 307 (1986)

    MathSciNet  Google Scholar 

  147. R.F. Engle, J.R. Russel, Autoregressive conditional duration: a new model for irregularly spaced transaction data. Econometrica 66, 1127 (1998)

    MATH  MathSciNet  Google Scholar 

  148. F. Mainardi, M. Raberto, R. Gorenflo, E. Scalas, Fractional calculus and continuous-time finance II: the waiting-time distribution. Physica A 287, 468 (2000)

    ADS  Google Scholar 

  149. M. Raberto, E. Scalas, F. Mainardi, Waiting-times and returns in high-frequency financial data: an empirical study. Phys. A 314, 749 (2002)

    MATH  Google Scholar 

  150. E. Scalas, R. Gorenflo, H. Luckock, F. Mainardi, M. Mantelli, M. Raberto, Anomalous waiting times in high-frequency financial data. Quant. Financ. 4, 695 (2004)

    MathSciNet  Google Scholar 

  151. T. Kaizoji, M. Kaizoji, Power law for the calm-time interval of price changes. Phys. A 336, 563 (2004)

    Google Scholar 

  152. E. Scalas, The application of continuous-time random walks in finance and economics. Phys. A 362, 225 (2006)

    Google Scholar 

  153. R. Gorenflo, F. Mainardi, The Asymptotic Universality of the Mittag-Leffler Waiting Time Law in Continuous Random Walks, Lecture Note at WE-Heraeus-Seminar on Physikzentrum Bad-Honnef (Germany, 2006), pp. 12–16

    Google Scholar 

  154. http://moneykit.net

  155. S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, 2001)

    MATH  Google Scholar 

  156. N.G. van Kappen, Stochastic Processes in Physics and Chemistry (North Holland, Amsterdam, 1992)

    Google Scholar 

  157. C.W. Gardiner, Handbook of Stochastic Methods for Physics Chemistry and Natural Sciences (Springer, Berlin, 1983)

    MATH  Google Scholar 

  158. H. Risken, The Fokker-Plank Equation: Methods of Solution and Applications (Springer, Berlin, 1984)

    Google Scholar 

  159. I. Simonsen, M.H. Jensen, A. Johansen, Optimal investment horizons. Eur. Phys. J. B 27, 583 (2002)

    ADS  Google Scholar 

  160. S. Kurihara, T. Mizuno, H. Takayasu, M. Takayasu, in The Application of Econophysics, ed. by H. Takayasu (Springer, 2003), p. 169

    Google Scholar 

  161. J. Inoue, N. Sazuka, Crossover between Lvy and Gaussian regimes in first-passage processes. Phys. Rev. E 76, 021111 (2007)

    ADS  Google Scholar 

  162. M. Montero, J. Masoliver, Mean exit time and survival probability within the CTRW formalism. Eur. J. Phys. B 57, 181 (2007)

    ADS  MATH  MathSciNet  Google Scholar 

  163. N. Sazuka, J. Inoue, E. Scalas, The distribution of first-passage times and durations in FOREX and future markets. Phys. A 388, 2839 (2009)

    Google Scholar 

  164. J. Inoue, N. Sazuka, Queueing theoretical analysis of foreign currency exchange rates. Quant. Financ. 10, 121 (2010)

    MathSciNet  Google Scholar 

  165. H.C. Tijms, A First Course in Stochastic Models (Wiley, Chichester, 2003)

    MATH  Google Scholar 

  166. S. Oishi, Queueing Theory (CORONA PUBLISHING CO. LTD (in Japanese), Japan, 2003)

    Google Scholar 

  167. N. Sazuka, Analysis of binarized high frequency financial data. Eur. Phys. J. B 50, 129 (2006)

    ADS  Google Scholar 

  168. N. Sazuka, On the gap between an empirical distribution and an exponential distribution of waiting times for price changes in a financial market. Phys. A 376, 500 (2007)

    MathSciNet  Google Scholar 

  169. N. Sazuka, J. Inoue, Fluctuations in time intervals of financial data from the view point of the Gini index. Phys. A 383, 49 (2007)

    MathSciNet  Google Scholar 

  170. T. Kaizoji, Speculative bubbles and crashes in stock markets: an interacting-agent model of speculative activity. Phys. A 287, 493 (2000)

    Google Scholar 

  171. T. Ibuki, S. Higano, S. Suzuki, J. Inoue, A. Chakraborti, Statistical inference of co-movements of stocks during a financial crisis. J. Phys. Conf. Ser. 473, 012008 (2013)

    ADS  Google Scholar 

  172. A. Chakraborti, D. Challet, A. Chatterjee, M. Marsili, Y.-C. Zhang, B.K. Chakrabarti, Statistical mechanics of competitive resource allocation using agent-based models. Phys. Rep. 1, 1 (2013) (in press, 2014). available at arXiv:1305.2121[bibphysics.soc-ph]

Download references

Acknowledgments

The authors would like to thank all their collaborators and students, whose works have been presented here. AG would like to thank B.K. Chakrabarti and S. Biswas for careful reading of the manuscript and useful comments. YF is supported in part by the European Community Seventh Framework Programme (FP7/2007–2013) under Socio-economic Sciences and Humanities, Grant agreement No. 255987 (FOC-II), by the Program for Promoting Methodological Innovation in Humanities and Social Sciences by Cross-Disciplinary Fusing of the Japan Society for the Promotion of Science, by Grant-in-Aid from the Zengin Foundation for Studies on Economics and Finance, and also by Grant-in-Aid for Scientific Research (B) No. 22300080 of the Ministry of Education, Science, Sports and Culture, Japan. JI thanks Enrico Scalas, Naoya Sazuka and Giacomo Livan for critical discussions and useful comments. He also acknowledges the financial support by Grant-in-Aid for Scientific Research (C) of Japan Society for the Promotion of Science, No. 22500195 and No. 25330278.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Chakraborti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chakraborti, A., Fujiwara, Y., Ghosh, A., Inoue, Ji., Sinha, S. (2015). Physicists’ Approaches to a Few Economic Problems. In: Abergel, F., Aoyama, H., Chakrabarti, B., Chakraborti, A., Ghosh, A. (eds) Econophysics and Data Driven Modelling of Market Dynamics. New Economic Windows. Springer, Cham. https://doi.org/10.1007/978-3-319-08473-2_11

Download citation

Publish with us

Policies and ethics