Skip to main content

Techniques, Taxonomy, and Challenges of Privacy Protection in the Smart Grid

  • Chapter
  • First Online:
Privacy in a Digital, Networked World

Abstract

As the ease with which any data are collected and transmitted increases, more privacy concerns arise leading to an increasing need to protect and preserve it. Much of the recent high-profile coverage of data mishandling and public misleadings about various aspects of privacy exasperates the severity. The Smart Grid (SG) is no exception with its key characteristics aimed at supporting bi-directional information flow between the consumer of electricity and the utility provider. What makes the SG privacy even more challenging and intriguing is the fact that the very success of the initiative depends on the expanded data generation, sharing, and processing. In particular, the deployment of smart meters whereby energy consumption information can easily be collected leads to major public hesitations about the technology. Thus, to successfully transition from the traditional Power Grid to the SG of the future, public concerns about their privacy must be explicitly addressed and fears must be allayed. Along these lines, this chapter introduces some of the privacy issues and problems in the domain of the SG, develops a unique taxonomy of some of the recently proposed privacy protecting solutions as well as some if the future privacy challenges that must be addressed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some technology company executives have gone so far to declare privacy irrelevant, dead, or even defunct. A more elaborate debunking of these myths can be found in [4].

  2. 2.

    http://www.oecd.org/internet/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm.

  3. 3.

    We use the terms generation and production interchangeably.

  4. 4.

    Microgrids are referred to as Distributed Resource Island Systems in IEEE 1547 terminology.

  5. 5.

    http://www.naruc.org/Resolutions/privacy_principles.pdf.

  6. 6.

    Senate Bill 1476 was passed in 2010 to protect the privacy and security of customer data generated by advanced meters. The California Public Utilities Commission (CPUC) subsequently issued Decision (D.)11-07-056 on July 28, 2011 to implement SB 1476. See http://www.cpuc.ca.gov/NR/rdonlyres/D77BA276-E88A-4C82-AFD2-FC3D3C76A9FC/0/TheEvolvingRoleofStateRegulationinCybersecurity9252012FINAL.pdf for more details.

References

  1. Warren SD, Brandeis LD (1890) The right to privacy. Harv Law Rev 4(5):193–220. doi:10.2307/1321160, url:http://www.jstor.org/stable/1321160

  2. Westin AF (1967) Privacy and freedom. Atheneum

    Google Scholar 

  3. DeCew J (2013) Privacy. In: Zalta EN (ed) The Stanford encyclopedia of philosophy, fall 2013 edn, url:http://plato.stanford.edu/entries/privacy/

  4. Richards NM (2014) Four myths of privacy. In: Sarat A (ed) A world without privacy?, April 2014 edn, url:http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2427808

  5. Holvast J (2007) 27—history of privacy. In: Leeuw KD, Bergstra J (eds) The history of information security. Elsevier Science B.V., Amsterdam, pp 737–769. doi:http://dx.doi.org/10.1016/B978-044451608-4/50028-6, url:http://www.sciencedirect.com/science/article/pii/B9780444516084500286

  6. OECD, for Economic Co-operation, O., Development (1981) Guidelines on the protection of privacy and transborder flows of personal data. Organisation for Economic Co-operation and Development; OECD Publications and Information Center Paris, Washington, D.C, url:http://oe.cd/privacy, http://www.oecd.org/internet/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm

  7. OECD (2013) Guidelines on the protection of privacy and transborder flows of personal data. Organisation for Economic Co-operation and Development; OECD Publications and Information Center Paris, Washington, D.C, url:http://www.oecd.org/sti/ieconomy/oecd_privacy_framework.pdf

  8. Chaum D (1985) Security without identification: transaction systems to make big brother obsolete. Commun ACM 28(10):1030–1044. doi:10.1145/4372.4373, url:http://dl.acm.org/citation.cfm?id=4372.4373

  9. van Rossum H, Gardeniers H, Borking J, Cavoukian A, Brans J, Muttupulle N, Magistrale N (1995) Privacy-enhancing technologies: the path to anonymity. Information and Privacy Commissioner/Ontario, Canada & Registratiekamer, Den Haag, The Netherlands

    Google Scholar 

  10. Blarkom GV, Borking J, Olk J (2003) Handbook of privacy and privacy-enhancing technologies. Privacy incorporated software, pp 42–50, url:http://www.andrewpatrick.ca/pisa/handbook/Handbook_Privacy_and_PET_final.pdf

  11. DRAFT NISTIR 7628 Revision 1 (2013) Guidelines for smart grid cyber security. Supportive analyses and references, vol 3. Smart Grid Interoperability Panel (SGIP), Smart Grid Cybersecurity Committee, url:http://csrc.nist.gov/publications/drafts/nistir-7628-r1/draft_nistir_7628_r1_vol3.pdf

  12. DRAFT NISTIR 7628 Revision 1 (2013) Guidelines for smart grid cybersecurity. Privacy and the smart grid, vol 2. Smart Grid Interoperability Panel (SGIP), Smart Grid Cybersecurity Committee, url:http://csrc.nist.gov/publications/drafts/nistir-7628-r1/draft_nistir_7628_r1_vol2.pdf

  13. DRAFT NISTIR 7628 Revision 1 (2013) Guidelines for smart grid cybersecurity: smart grid cybersecurity strategy, architecture, and high-level requirements, vol 1. Smart Grid Interoperability Panel (SGIP), Smart Grid Cybersecurity Committee, url: http://csrc.nist.gov/publications/drafts/nistir-7628-r1/draft_nistir_7628_r1_vol1.pdf

  14. Asghar M, Miorandi D (2013) A holistic view of security and privacy issues in smart grids. In: Cuellar J (ed) Smart grid security. Lecture notes in computer science, vol 7823. Springer, Berlin, pp 58–71, url:http://dx.doi.org/10.1007/978-3-642-38030-3_4

  15. Barenghi A, Pelosi G (2011) Security and privacy in smart grid infrastructures. In: Proceedings—international workshop on database and expert systems applications, DEXA, pp 102–108. doi:10.1109/DEXA.2011.74

  16. Hauser CH, Bakken DE, Dionysiou I, Gjermudød KK, Irava VS, Helkey J, Bose A (2007) Security, trust and QoS in next-generation control and communication for large power systems. Int J Crit Infrastruct 4:3–16

    Google Scholar 

  17. Chen TM (2010) Survey of cyber security issues in smart grids. doi:10.1117/12.862698, url:http://dx.doi.org/10.1117/12.862698

  18. Cleveland FM (2008) Cyber security issues for advanced metering infrastructure (AMI). In: Power and energy society general meeting—conversion and delivery of electrical energy in the 21st century, 2008 IEEE, pp 1–5. doi:10.1109/PES.2008.4596535

  19. Das SK, Kant K, Zhang N (2012) Handbook on securing cyber-physical critical infrastructure. Elsevier Science, url:http://books.google.com/books?id=MftTeQivgA0C

  20. Fleury T, Khurana H, Welch V (2009) Towards a taxonomy of attacks against energy control systems, pp 71–85. Springer. doi:10.1007/978-0-387-88523-0_6, url:http://www.springerlink.com/content/d38w8553g6211838/

  21. For E, Chan AC, Zhou J (2013) On smart grid cybersecurity standardization: Issues of designing with NISTIR 7628. Commun Mag, IEEE 51(1):58–65. doi:10.1109/MCOM.2013.6400439

    Article  Google Scholar 

  22. Fries S, Falk R, Sutor A (2013) Smart grid information exchange securing the smart grid from the ground. In: Cuellar J (ed) Smart grid security. Lecture notes in computer science, vol 7823. Springer, Berlin, pp 26–44, url:http://dx.doi.org/10.1007/978-3-642-38030-3_2

  23. Hahn A, Govindarasu M (2011) Cyber attack exposure evaluation framework for the smart grid. IEEE Trans Smart Grid 2(4):835–843. doi:10.1109/TSG.2011.2163829

    Article  Google Scholar 

  24. Hull J, Khurana H, Markham T, Staggs K (2012) Staying in control: cybersecurity and the modern electric grid. Power Energy Mag, IEEE 10(1):41–48. doi:10.1109/MPE.2011.943251

    Article  Google Scholar 

  25. Jokar P, Arianpoo N, Leung VCM (2012) A survey on security issues in smart grids. Secur Commun Netw. doi:10.1002/sec.559, url:http://dx.doi.org/10.1002/sec.559

  26. Li X, Liang X, Lu R, Shen X, Lin X, Zhu H (2012) Securing smart grid: cyber attacks, countermeasures, and challenges. Commun Mag IEEE 50(8):38–45. doi:10.1109/MCOM.2012.6257525

    Article  Google Scholar 

  27. Liu J, Xiao Y, Li S, Liang W, Chen CLP (2012) Cyber security and privacy issues in smart grids. Commun Surv Tutor IEEE 14(4):981–997. doi:10.1109/SURV.2011.122111.00145

    Article  Google Scholar 

  28. McBride AJ, McGee AR (2012) Assessing smart grid security. Bell Labs Tech J 17(3):87–103. doi:10.1002/bltj.21560, url:http://dx.doi.org/10.1002/bltj.21560

  29. Mo Y, Kim TH, Brancik K, Dickinson D, Lee H, Perrig A, Sinopoli B (2012) Cyber-physical security of a smart grid infrastructure. Proc IEEE 100(1):195–209. doi:10.1109/JPROC.2011.2161428

    Article  Google Scholar 

  30. Nordell DE (2012) Terms of protection: the Many faces of smart grid security. Power Energy Mag IEEE 10(1):18–23. doi:10.1109/MPE.2011.943194

    Article  Google Scholar 

  31. Systems S, McDaniel P, McLaughlin S (2009) Security and privacy challenges in the smart grid. Secur Priv IEEE 7(3):75–77. doi:10.1109/MSP.2009.76

    Article  Google Scholar 

  32. Wang W, Lu Z (2013) Cyber security in the smart grid: survey and challenges. Comput Netw 57(5):1344–1371. doi:http://dx.doi.org/10.1016/j.comnet.2012.12.017 , url:http://www.sciencedirect.com/science/article/pii/S1389128613000042

  33. Wang Y, Ruan D, Gu D, Gao J, Liu D, Xu J, Chen F, Dai F, Yang J (2011) Analysis of smart grid security standards. In: 2011 IEEE international conference on computer science and automation engineering (CSAE), vol 4, pp 697–701. doi:10.1109/CSAE.2011.5952941

  34. Xiao Y (2013) Security and privacy in smart grids. Taylor & Francis, url:http://books.google.com/books?id=QQ2oY0IrRM8C

  35. Yan Y, Qian Y, Sharif H, Tipper D (2012) A survey on cyber security for smart grid communications. Commun Surv Tutor IEEE 14(4):998–1010. doi:10.1109/SURV.2012.010912.00035

    Article  Google Scholar 

  36. Zhou L, Chen S (2012) A survey of research on smart grid security. In: Lei J, Wang F, Li M, Luo Y (eds) Network computing and information security. Commun Comput Inf Sci 345:395–405 (Springer, Berlin, url:http://dx.doi.org/10.1007/978-3-642-35211-9_52

  37. Fang X, Misra S, Xue G, Yang D (2012) Smart grid the new and improved power grid: a survey. IEEE Commun Surv Tutor 14(4):944–980. doi:10.1109/SURV.2011.101911.00087, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6099519

  38. Gharavi H, Ghafurian R (2011) {Smart grid}: the electric energy system of the future. Proc IEEE 99(6):917–921. doi:10.1109/jproc.2011.2124210, url:http://dx.doi.org/10.1109/jproc.2011.2124210

  39. US Department of Energy (2006) Benefits of demand response in electricity markets and recommendations for achieving them—a report to the United States Congress Pursant to Section 1252 of the Energy Policy Act of 2005, pp 122

    Google Scholar 

  40. National Institute of Standards and Technology (2013: NIST framework and roadmap for smart grid interoperability standards, Release 2.0. smart grid interoperability panel (SGIP), url:http://j.mp/1rs1tKs http://collaborate.nist.gov/twiki-sggrid/pub/SmartGrid/IKBFramework/NIST_Framework_Release_2-0_corr.pdf

  41. International Electrotechnical Commission (2010) IEC Strategic Group 3, Smart grid standardization roadmap, url:http://www.iec.ch/smartgrid/downloads/sg3_roadmap.pdf

  42. European Committee for Electrotechnical Standardization (2011) Final report of the CEN/CENELEC/ETSI Joint Working Group on Standards for Smart Grids

    Google Scholar 

  43. IEEE guide for smart grid interoperability of energy technology and information technology operation with the electric power system (EPS) (2011) End-use applications, and loads. IEEE Std 2030-2011, pp 1–126. doi:10.1109/IEEESTD.2011.6018239

  44. International Energy Agency (2013) Tracking clean energy progress 2013. IEA input to the clean energy ministerial, url:http://www.iea.org/publications/TCEP_web.pdf

  45. National Energy Technology Laboratory, the U.S. Department of Energy, D.O.E., Office of Electricity Delivery and Energy Reliability (2008) Advanced metering infrastructure. White Paper

    Google Scholar 

  46. Kroposki B, Pink C, Basso T, DeBlasio R (2007) Microgrid standards and technology development. In: Power engineering society general meeting, 2007, pp 1–4. IEEE. doi:10.1109/PES.2007.386053

  47. Lasseter RH (2002) MicroGrids. In: Power engineering society winter meeting, vol 1, pp 305–308. IEEE. doi:10.1109/PESW.2002.985003

  48. Vaccaro A, Popov M, Villacci D, Terzija V (2011) An integrated framework for smart microgrids modeling, monitoring, control, communication, and verification. Proc IEEE 99(1):119–132. doi:10.1109/JPROC.2010.2081651

    Article  Google Scholar 

  49. Masters GM (2004) Renewable and efficient electric power systems. Wiley, New York)

    Google Scholar 

  50. Mohsenian-Rad AH, Wong VWS, Jatskevich J, Schober R, Leon-Garcia A (2010) Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Trans Smart Grid 1(3):320–331. doi:10.1109/TSG.2010.2089069

  51. Mohsenian-Rad AH, Leon-Garcia A (2010) Optimal residential load control with price prediction in real-time electricity pricing environments. IEEE Trans Smart Grid 1(2):120–133. doi:10.1109/TSG.2010.2055903

    Article  Google Scholar 

  52. Samadi P, Mohsenian-Rad AH, Schober R, Wong VWS, Jatskevich J (2010) Optimal real-time pricing algorithm based on utility maximization for smart grid. In: IEEE SmartGridComm, pp 415–420). doi:10.1109/SMARTGRID.2010.5622077

  53. Zhu Z, Tang J, Lambotharan S, Chin WH, Fan Z (2011) An integer linear programming and game theory based optimization for demand-side management in smart grid. In: GLOBECOM workshops (GC Wkshps), 2011 IEEE, pp 1205–1210. doi:10.1109/GLOCOMW.2011.6162372

  54. Hajdu LP, Peschon J, Tinney WF, Piercy DS (1968) Optimum load-shedding policy for power systems. IEEE Trans Power Apparatus Syst PAS-87(3):784–795. doi:10.1109/TPAS.1968.292194

  55. Aponte EE, Nelson JK (2006) Time optimal load shedding for distributed power systems. IEEE Trans Power Syst 21(1):269–277. doi:10.1109/TPWRS.2005.857826

    Article  Google Scholar 

  56. De Tuglie E, Dicorato M, La Scala M, Scarpellini P (2000) A corrective control for angle and voltage stability enhancement on the transient time-scale. IEEE Trans Power Syst 15(4):1345–1353. doi:10.1109/59.898111

    Article  Google Scholar 

  57. Du P, Nelson JK (2009) Two-step solution to optimal load shedding in a micro-grid. In: Power systems conference and exposition, 2009. PSCE ‘09. IEEE/PES, pp 1–9. doi:10.1109/PSCE.2009.4840112

  58. Molina-Markham A, Shenoy P, Fu K, Cecchet E, Irwin D (2010) Private memoirs of a smart meter. In: Proceedings of the 2nd ACM workshop on embedded sensing systems for energy-efficiency in building, BuildSys ‘10. ACM, New York, NY, USA, pp 61–66. doi:10.1145/1878431.1878446

  59. Wang Z, Zheng G, Member S (2012) Residential appliances identification and monitoring by a nonintrusive method. IEEE Trans Smart Grid 3(1):80–92. doi:10.1109/TSG.2011.2163950

  60. Perrig A, Szewczyk R, Tygar JD, Wen V, Culler DE (2002) SPINS: security protocols for sensor networks. Wirel Netw 8(5):521–534. doi:10.1023/A:1016598314198

    Article  MATH  Google Scholar 

  61. Miller J (2008) Who are you, Part II: more on the trade-off between information utility and privacy. IEEE Internet Comput 12(6):91–93. doi:10.1109/MIC.2008.135, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4670125

  62. Miller J (2008) Who are you? The trade-off between information utility and privacy. IEEE Internet Comput 12(4):93–96. doi:10.1109/MIC.2008.91, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4557986

  63. Pedersen DM (1982) Personality correlates of privacy. J Psychol 112(1):11–14. doi:10.1080/00223980.1982.9923528, url:http://www.tandfonline.com/doi/abs/10.1080/00223980.1982.9923528

  64. Brierley N (1992) The meaning and use of privacy: a study of young adults. Ph.D. thesis, The University of Arizona

    Google Scholar 

  65. International Energy Agency (2011) Technology roadmap: smart grids, url:http://www.iea.org/papers/2011/

  66. Kindy DA, Pathan ASK (2011) A survey on SQL injection: vulnerabilities, attacks, and prevention techniques. In: 2011 IEEE 15th international symposium on consumer electronics (ISCE), pp 468–471. IEEE. doi:10.1109/ISCE.2011.5973873, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5973873

  67. Singh M (2002) Privacy for telecom services. IEEE Internet Comput 6(1):4–5. doi:10.1109/MIC.2002.978364, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=978364

  68. Hart GWG (1992) Nonintrusive appliance load monitoring. In: Proc IEEE 80(12):1870–1891. doi:10.1109/5.192069, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=192069

  69. Zeifman M, Roth K (2011) Nonintrusive appliance load monitoring: review and outlook. IEEE Trans Consum Electron 57(1):76–84. doi:10.1109/TCE.2011.5735484, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5735484

  70. Lisovich MA, Mulligan DK, Wicker SB (2010) Inferring personal information from demand-response systems. IEEE Secur Priv Mag 8(1):11–20. doi:10.1109/MSP.2010.40, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5403146

  71. Khurana H, Hadley M, Lu N, Frincke DA (2010) Smart-grid security issues. IEEE Secur Priv 8:81–85. doi:10.1109/MSP.2010.49

    Article  Google Scholar 

  72. Li FF, Luo B, Liu P (2010) Secure information aggregation for smart grids using homomorphic encryption. In: IEEE SmartGridComm, pp 327–332. IEEE. doi:10.1109/SMARTGRID.2010.5622064, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5622064

  73. Zeadally S, Pathan AS, Alcaraz C, Badra M (2013) Towards privacy protection in smart grid. Wirel Pers Commun 73(1):23–50. doi:10.1007/s11277-012-0939-1, url:http://dx.doi.org/10.1007/s11277-012-0939-1

  74. Budka K, Deshpande J, Hobby J, Kim YJKYJ, Kolesnikov V, Lee WLW, Reddington T, Thottan M, White CCA, Choi JICJI, Hong JHJ, Kim JKJ, Ko WKW, Nam YWNYW, Sohn SYSSY (2010) GERI—Bell labs smart grid research focus: economic modeling, networking, and security & privacy. In: 2010 first IEEE international conference on smart grid communications (SmartGridComm), pp 208–213. IEEE. doi:10.1109/SMARTGRID.2010.5622043, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5622043

  75. Efthymiou C, Kalogridis G (2010) Smart grid privacy via anonymization of smart metering data. In: SmartGridComm, pp 238–243. doi:10.1109/SMARTGRID.2010.5622050

  76. Vetter B, Ugus O, Westhoff D, Sorge C (2012) Homomorphic primitives for a privacy-friendly smart metering architecture. In: SECRYPT 2012—proceedings of the international conference on security and cryptography, pp 102–112, url http://www.scopus.com/inward/record.url?eid=2-s2.0-84867646415&partnerID=tZOtx3y1

  77. Cardenas A, Safavi-Naini R (2012) Security and privacy in the smart grid. In: Das SK, Kant K, Zhang N (eds) Handbook on securing cyber-physical critical infrastructure

    Google Scholar 

  78. Chen L, Lu R, Cao, Z (2014) PDAFT: a privacy-preserving data aggregation scheme with fault tolerance for smart grid communications. Peer-to-peer networking and applications, pp 1–11. doi:10.1007/s12083-014-0255-5, url:http://dx.doi.org/10.1007/s12083-014-0255-5

  79. Chen L, Lu R, Cao Z, AlHarbi K, Lin X (2014) MuDA: multifunctional data aggregation in privacy-preserving smart grid communications. Peer-to-peer networking and applications, pp 1–16. doi:10.1007/s12083-014-0292-0, url:http://dx.doi.org/10.1007/s12083-014-0292-0

  80. Chim T, Yiu S, Li V, Hui C, Zhong J (2014) PRGA: privacy-preserving recording amp; Gateway-assisted authentication of power usage information for smart grid. IEEE Trans Dependable Secure Comput PP(99):1. doi:10.1109/TDSC.2014.2313861

  81. Gómez Mármol F, Sorge C, Petrlic R, Ugus O, Westhoff D, Martnez Pérez G (2013) Privacy-enhanced architecture for smart metering. Int J Inf Secur 12(2):67–82. doi:10.1007/s10207-012-0181-6, url:http://dx.doi.org/10.1007/s10207-012-0181-6, http://link.springer.com/10.1007/s10207-012-0181-6

  82. Liang X, Li X, Lu R, Lin X, Shen X (2013) UDP: usage-based dynamic pricing with privacy preservation for smart grid. IEEE Trans Smart Grid 4(1):141–150. doi:10.1109/TSG.2012.2228240

    Article  Google Scholar 

  83. Phom HS, Kuntze N, Rudolph C, Cupelli M, Liu J, Monti A, Simo Fhom H (2010) A user-centric privacy manager for future energy systems. Power System, pp 1–7. doi:10.1109/POWERCON.2010.5666447, url:http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5666447, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5666447

  84. Rottondi C, Verticale G, Capone A (2013) Privacy-preserving smart metering with multiple data consumers. Comput Netw 57(7):1699–1713. doi:http://dx.doi.org/10.1016/j.comnet.2013.02.018, url:http://www.sciencedirect.com/science/article/pii/S1389128613000364

  85. Finster S, Baumgart I (2013) Elderberry: a peer-to-peer, privacy-aware smart metering protocol. In: Proceedings—IEEE INFOCOM, pp 3411–3416. doi:10.1109/INFCOM.2013.6567173

  86. Stoica I, Morris R, Liben-Nowell D, Karger DR, Kaashoek MF, Dabek F, Balakrishnan H (2003) Chord: A scalable peer-to-peer lookup protocol for Internet applications. IEEE/ACM Trans Netw 11:17–32. doi:10.1109/TNET.2002.808407

    Article  Google Scholar 

  87. Badra M, Zeadally S (2014) Design and Performance analysis of a virtual ring architecture for smart grid privacy. IEEE Trans Forensics Secur 9(2):321–329. doi:10.1109/TIFS.2013.2296441

    Article  Google Scholar 

  88. Finster S, Baumgart I (2013) Pseudonymous smart metering without a trusted third party. In: Proceedings—12th IEEE international conference on trust, security and privacy in computing and communications, TrustCom 2013, pp 1723–1728. doi:10.1109/TrustCom.2013.234

  89. Li S, Choi K, Chae K (2014) OCPM: ortho code privacy mechanism in smart grid using ring communication architecture. Ad Hoc Netw. doi:http://dx.doi.org/10.1016/j.adhoc.2014.05.007, url:http://www.sciencedirect.com/science/article/pii/S1570870514001024

  90. Mármol F, Sorge C, Ugus O, Pérez G., Mármol FG, Pérez GM (2012) Do not snoop my habits: preserving privacy in the smart grid. IEEE Commun Mag 50(5):166–172. doi:10.1109/MCOM.2012.6194398, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6194398

  91. Thoma C, Cui T, Franchetti F (2012) Secure multiparty computation based privacy preserving smart metering system. In: 2012 North American power symposium (NAPS), pp 1–6. IEEE. doi:10.1109/NAPS.2012.6336415, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6336415

  92. Yu C, Chen C, Kuo S, Chao H (2014) Privacy-preserving power request in smart grid networks. Syst J IEEE 8(2):441–449. doi:10.1109/JSYST.2013.2260680

    Article  Google Scholar 

  93. Ge B, Zhu WTW (2013) Preserving user privacy in the smart grid by hiding appliance load characteristics. In: Wang G, Ray I, Feng D, Rajarajan M (eds) Cyberspace safety and security. Lecture notes in computer science, vol 8300. Springer International Publishing, pp 67–80 (2013), url:http://link.springer.com/chapter/10.1007/978-3-319-03584-0_6

  94. Kalogridis G, Cepeda R, Denic SZ, Lewis T, Efthymiou C (2011) ElecPrivacy: evaluating the privacy protection of electricity management algorithms. IEEE Trans Smart Grid 2(4):750–758. doi:10.1109/TSG.2011.2160975, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6003811

  95. Kalogridis G, Efthymiou C, Denic SZ, Lewis TA, Cepeda R (2010) Privacy for smart meters: towards undetectable appliance load signatures. In: 2010 first IEEE international conference on smart grid communications (SmartGridComm), pp 232–237. doi:10.1109/SMARTGRID.2010.5622047

  96. Kalogridis GG, Denic SZ (2011) Data mining and privacy of personal behaviour types in smart grid. In: Proceedings—IEEE international conference on data mining, ICDM, pp 636–642. IEEE. doi:10.1109/ICDMW.2011.58, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6137440

  97. Zhao J, Jung T, Wang Y, Li XY (2014) Achieving differential privacy of data disclosure in the smart grid. In: IEEE INFOCOM 2014

    Google Scholar 

  98. Li H, Mao R, Lai L, Qiu RC (2010) Compressed meter reading for delay-sensitive and secure load report in smart grid. In: 2010 first IEEE international conference on smart grid communications (SmartGridComm), pp 114–119. IEEE. doi:10.1109/SMARTGRID.2010.5622027, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5622027

  99. Rajagopalan SR, Sankar L, Mohajer S, Poor HV Smart meter privacy: a utility-privacy framework. In: 2011 IEEE international conference on smart grid communications, SmartGridComm 2011, pp 190–195. doi:10.1109/SmartGridComm.2011.6102315

  100. Candes E, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509. doi:10.1109/TIT.2005.862083, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1580791

  101. Candes EJ, Tao T (2006) Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans Inf Theory 52(12):5406–5425. doi:10.1109/TIT.2006.885507, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4016283

  102. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306. doi:10.1109/Tit.2006.871582, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1614066

  103. Shamir A (1985) Identity-based cryptosystems and signature schemes. In: Proceedings of CRYPTO 84 on advances in cryptology, pp 47–53. doi:10.1007/3-540-39568-7_5, url:http://dl.acm.org/citation.cfm?id=19478.19483

  104. Boneh D, Franklin M (2003) Identity-based encryption from the weil pairing. doi:10.1137/S0097539701398521

  105. Cocks C (2001) An identity based encryption scheme based on quadratic residues. Cryptogr Coding, pp 360–363. doi:10.1007/3-540-45325-3_32, url:http://link.springer.com/chapter/10.1007/3-540-45325-3_32

  106. Kalogridis G, Sooriyabandara M, Fan Z, Mustafa MA (2014) Toward unified security and privacy protection for smart meter networks. Syst J IEEE 8(2):641–654. doi:10.1109/JSYST.2013.2260940

    Article  Google Scholar 

  107. Goyal V, Pandey O, Sahai A, Waters B (2006) Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM conference on computer and communications security—CCS ‘06. ACM Press, New York, p 89. doi:10.1145/1180405.1180418, url:http://dl.acm.org/citation.cfm?id=1180405.1180418

  108. Li D, Aung Z, Williams J, Sanchez A (2014) P2DR: privacy-preserving demand response system in smart grids. In: 2014 international conference on computing, networking and communications (ICNC), pp 41–47. doi:10.1109/ICCNC.2014.6785302

  109. Cheung JCL, Chim TW, Yiu SM, Hui LCK, Li VOK (2011) Credential-based privacy-preserving power request scheme for smart grid network. In: 2011 IEEE global telecommunications conference—GLOBECOM 2011, pp 1–5. IEEE. doi:10.1109/GLOCOM.2011.6134566, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6134566

  110. Chim T, Yiu S, Hui L, Li V, Mui T, Tsang Y, Kwok C, Yu K (2012) Selling power back to the grid in a secure and privacy-preserving manner. In: Chim T, Yuen T (eds) Information and communications security, vol 7618., Lecture notes in computer scienceSpringer, Berlin, pp 445–452

    Chapter  Google Scholar 

  111. Yao AC (1982) Protocols for secure computations. 23rd annual symposium on foundations of computer science (sfcs 1982), pp 160–164. doi:10.1109/SFCS.1982.38, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4568388

  112. Goldreich O, Micali S, Wigderson A (1987) How to play any mental game. In: ACM symposium on theory of computing, STOC ‘87, pp 218–229. ACM. doi:10.1145/28395.28420

  113. Rivest RL, Adleman L, Dertouzos ML (1978) On data banks and privacy homomorphisms. In: Foundations of secure computation, pp 169–179

    Google Scholar 

  114. Gentry C (2009) A fully homomorphic encryption scheme. Ph.D. thesis. doi:10.1145/1536414.1536440, url:http://cs.au.dk/stm/local-cache/gentry-thesis.pdf

  115. Paillier P, Pointcheval D (1999) Efficient public-key cryptosystems provably secure against active adversaries. In: ASIACRYPT’99, vol 99, pp 1–13. doi:10.1007/978-3-540-48000-6_14, url:http://link.springer.com/chapter/10.1007/978-3-540-48000-6_14

  116. Paillier P, Stern PJ, Eurocrypt C (1999) Public-key cryptosystems based on composite degree residuosity classes. Advances in cryptology EUROCRYPT 99, vol 1592, pp 223–238. doi:10.1007/3-540-48910-X_16

  117. Boneh D, Goh E, Nissim K (2005) Evaluating 2-DNF formulas on ciphertexts. Theory of cryptography, pp 325–341. doi:10.1007/978-3-540-30576-7_18

  118. Erkin Z, Tsudik G (2012) Private computation of Spatial and temporal power consumption with smart meters. In: Applied cryptography and network security. Lecture notes in computer science, vol 7341, pp 561–577, url:http://link.springer.com/chapter/10.1007/978-3-642-31284-7_33

  119. Garcia FF, Jacobs B (2011) Privacy-friendly energy-metering via homomorphic encryption. Secur Trust Manage 6710:226–238, url:http://link.springer.com/chapter/10.1007/978-3-642-22444-7_15

  120. Kirschbaum M, Plos T, Schmidt JM (2013) On secure multi-party computation in bandwidth-limited smart-meter systems. In: 2013 international conference on availability, reliability and security, pp 230–235. IEEE. doi:10.1109/ARES.2013.137, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6657245

  121. Lu R, Liang X, Li X, Lin X, Shen X (2012) EPPA: an efficient and privacy-preserving aggregation scheme for secure smart grid communications. IEEE Trans Parallel Distrib Syst 23:1621–1632. doi:10.1109/TPDS.2012.86

    Article  Google Scholar 

  122. Rottondi C, Verticale G, Krauss C (2013) Distributed privacy-preserving aggregation of metering data in smart grids. IEEE JSAC 31(7):1342–1354. doi:10.1109/JSAC.2013.130716

    Google Scholar 

  123. Cramer R, Shoup V (1998) A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: EUROCRYPT ‘98: advances in cryptology, pp 13–25. doi:10.1007/BFb0055715, url:http://www.springerlink.com/content/bejnetn8v8n5vkc3/

  124. Baharlouei Z, Hashemi M (2014) Efficiency-fairness trade-off in privacy-preserving autonomous demand side management. IEEE Trans Smart Grid 5(2):799–808. doi:10.1109/TSG.2013.2296714, url http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6740907

  125. Clifton C, Kantarcioglu M, Vaidya J, Lin X, Zhu MY (2002) Tools for privacy preserving distributed data mining. SIGKDD Explor Newsl 4(2):28–34. doi:10.1145/772862.772867

    Article  Google Scholar 

  126. Shamir A (1979) How to share a secret. Commun ACM 22(11):612–613. doi:http://doi.acm.org/10.1145/359168.359176, url:http://doi.acm.org/10.1145/359168.359176

  127. Chim TW, Yiu SM, Hui LCK, Li VOK (2011) PASS: privacy-preserving authentication scheme for smart grid network. In: 2011 IEEE international conference on smart grid communications, SmartGridComm 2011, pp 196–201. IEEE. doi:10.1109/SmartGridComm.2011.6102316, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6102316

  128. Liu H, Ning H, Zhang Y, Xiong Q, Yang LT (2014) Role-dependent privacy preservation for secure V2G networks in the smart grid. IEEE Trans Inf Forensics Secur 9(2):208–220. doi:10.1109/TIFS.2013.2295032

    Article  Google Scholar 

  129. Goldreich O, Micali S, Wigderson A (1991) Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J ACM 38(3):690–728. doi:10.1145/116825.116852, url:http://dl.acm.org/citation.cfm?id=116825.116852

  130. Rial A, Danezis G (2011) Privacy-preserving smart metering. In: Proceedings of the 10th annual ACM workshop on privacy in the electronic society—WPES ‘11. ACM Press, New York, p 49. doi:10.1145/2046556.2046564, url:http://dl.acm.org.proxy2.library.illinois.edu/citation.cfm?id=2046556.2046564

  131. Bellare M, Goldreich O (1993) Advances in cryptology CRYPTO 92. In: Brickell EF (ed) Advances in cryptology CRYPTO 92. Lecture notes in computer science, vol 740. Springer, Berlin, pp 390–420. doi:10.1007/3-540-48071-4, url:http://www.springerlink.com/index/10.1007/3-540-48071-4

  132. Chaum D (1983) Blind signatures for untraceable payments. In: Chaum D, Rivest RL, Sherman AT (eds) Advances in cryptology 1983. Springer, Boston, pp 199–203. doi:10.1007/978-1-4757-0602-4, url:http://link.springer.com/10.1007/978-1-4757-0602-4

  133. Stadler M, Piveteau JMJJM, Camenisch J (1995) Fair blind signatures. In: Advances in Cryptology Eurocrypt 95, pp 209–219. doi:10.1007/3-540-49264-X_17, url:http://link.springer.com/chapter/10.1007/3-540-49264-X_17

  134. Rabin MO (1981) How to exchange secrets by oblivious transfer

    Google Scholar 

  135. Aiello B, Ishai Y, Reingold O (2001) Priced oblivious transfer: how to sell digital goods. In: Advances in cryptology EUROCRYPT 2001. Lecture notes in computer science, vol 2045. Springer, Berlin, pp 119–135. doi:10.1007/3-540-44987-6_8, url:http://www.springerlink.com/index/557e8bykh3vbf0kc.pdf

  136. Fan CI, Huang SY, Artan W (2013) Design and implementation of privacy preserving billing protocol for smart grid. J Supercomput 66(2):841–862. doi:10.1007/s11227-013-0905-z, url:http://dx.doi.org/10.1007/s11227-013-0905-z

  137. Cárdenas A, Amin S, Schwartz G (2012) Privacy-aware sampling for residential demand response programs. In: Proceedings of 1st international ACM, url:http://www.eecs.berkeley.edu/schwartz/HiCons2012ASG.pdf

  138. Yan Y, Qian Y, Sharif H (2011) A secure and reliable in-network collaborative communication scheme for advanced metering infrastructure in smart grid. In: IEEE WCNC, pp 909–914. doi:10.1109/WCNC.2011.5779257

  139. Chrestenson HE (1955) A class of generalized Walsh functions. Pac J Math 5(1):17–31, url:http://projecteuclid.org/euclid.pjm/1103044605

  140. Wallis JS (1975) On Hadamard matrices. J Comb Theory Ser A 18(2):149–164. doi:10.1016/0097-3165(75)90003-5, url:http://www.sciencedirect.com/science/article/pii/0097316575900035

  141. Berrar DD, Dubitzky W (2013) Information gain (KullbackLeibler divergence). In: Dubitzky W, Wolkenhauer O, Cho KH, Yokota H (eds) Encyclopedia of systems biology 2013. Springer, New York, pp 1022–1023. doi:10.1007/978-1-4419-9863-7, url:http://link.springer.com/10.1007/978-1-4419-9863-7

  142. Gunduz D, Gomez-Vilardebo J, Poor HV, Tan O (2013) Information theoretic privacy for smart meters. In: 2013 information theory and applications workshop (ITA), pp 1–7. IEEE. doi:10.1109/ITA.2013.6503006, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6503006

  143. Sankar L, Rajagopalan SR, Mohajer S, Poor HV (2013) Smart meter privacy: a theoretical framework. IEEE Trans Smart Grid 4(2):837–846. doi:10.1109/TSG.2012.2211046

    Article  Google Scholar 

  144. Kim Y, Ngai ECH, Srivastava MB (2011) Cooperative state estimation for preserving privacy of user behaviors in smart grid. In: 2011 IEEE international conference on smart grid communications, SmartGridComm 2011, pp 178–183. doi:10.1109/SmartGridComm.2011.6102313

  145. Huang YF, Werner S, Huang J, Kashyap N, Gupta V (2012) State estimation in electric power grids: meeting new challenges presented by the requirements of the future grid. IEEE Signal Process Mag 29(5):33–43. doi:10.1109/MSP.2012.2187037, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6279588

  146. Jia W, Zhu H, Cao Z, Dong X, Xiao C, Member S (2014) Human-factor-aware privacy-preserving aggregation in smart grid. Syst J IEEE 8(2):598–607. doi:10.1109/JSYST.2013.2260937

    Article  Google Scholar 

  147. Bohli JM, Sorge C, Ugus O (2010) A privacy model for smart metering. In: IEEE ICC, pp 1–5. doi:10.1109/ICCW.2010.5503916

  148. Lin HY, Tzeng WG, Shen ST, Lin BSP (2012) A practical smart metering system supporting privacy preserving billing and load monitoring. In: Feng B, Samarati P, and Zhou J (ed) Applied cryptography and network security. Springer, Berlin, pp 544–560, url:http://link.springer.com/chapter/10.1007%2F978-3-642-31284-7_32#

  149. Ren X, Yang X, Lin J, Yang Q, Yu W (2013) On scaling perturbation based privacy-preserving schemes in smart metering systems. In: 2013 22nd international conference on computer communication and networks (ICCCN), pp 1–7. IEEE. doi:10.1109/ICCCN.2013.6614162, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6614162

  150. Zhang H, Yu N, Wen Y, Zhang W (2014) Toward optimal noise distribution for privacy preserving in data aggregation. Comput Secur. doi:http://dx.doi.org/10.1016/j.cose.2014.05.009, url:http://linkinghub.elsevier.com/retrieve/pii/S016740481400090X, http://www.sciencedirect.com/science/article/pii/S016740481400090X

  151. Acs G, Castelluccia C, Gergely Acs G (2011) I have a DREAM! (DiffeRentially privatE smArt Metering). In Filler T, Pevný T, Craver S, Ker A (eds) Information hiding. Lecture notes in computer science, vol 6958. Springer, Berlin, pp. 118–132. doi:10.1007/978-3-642-24178-9, url:http://www.springerlink.com/index/10.1007/978-3-642-24178-9, http://link.springer.com/10.1007/978-3-642-24178-9, http://link.springer.com/chapter/10.1007/978-3-642-24178-9_9

  152. Ghosh A, Roughgarden T, Sundararajan M (2009) Universally utility-maximizing privacy mechanisms. In: Proceedings of the 41st annual ACM symposium on theory of computing—STOC ‘09. ACM Press, New York, p 351. doi:10.1145/1536414.1536464, url:http://dl.acm.org/citation.cfm?id=1536414.1536464

  153. Dwork C (2008) Differential privacy: a survey of results. Theory Appl Models Comput 4978:1–19. doi:10.1007/978-3-540-79228-4_1, url:http://www.springerlink.com/index/u963k75981004046.pdf

  154. Dwork C, Kenthapadi K, McSherry F, Mironov I, Naor M (2006) Our data, ourselves: privacy via distributed noise generation. Lecture notes in computer science (including subseries Lecture notes in artificial intelligence and Lecture notes in bioinformatics), vol 4004. LNCS, pp 486–503. doi:10.1007/11761679_29

  155. Dan G, Lui KSKS, Tabassum R, Zhu Q, Nahrstedt K (2013) SELINDA: a secure, scalable and light-weight data collection protocol for smart grids. In: 2013 IEEE international conference on smart grid communications (SmartGridComm), pp 480–485. IEEE. doi:10.1109/SmartGridComm.2013.6688004, url:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6688004

  156. Cho S, Li H, Choi BJ (2014) PALDA: efficient privacy-preserving authentication for lossless data aggregation in smart grids. In: 2014 IEEE international conference on smart grid communications (SmartGridComm). Venice, Italy

    Google Scholar 

  157. Feng T, Wang C, Zhang W, Ruan L (2008) Confidentiality protection for distributed sensor data aggregation. In: IEEE INFOCOM. doi:10.1109/INFOCOM.2008.20

  158. Groat MM, He W, Forrest S (2011) KIPDA: k-indistinguishable privacy-preserving data aggregation in wireless sensor networks. In: IEEE INFOCOM, pp 2024–2032. doi:10.1109/INFCOM.2011.5935010

  159. He W, Liu X, Nguyen H, Nahrstedt K, Abdelzaher T (2007) PDA: privacy-preserving data aggregation in wireless sensor networks. In: IEEE INFOCOM 2007, pp 2045–2053). doi:10.1109/INFCOM.2007.237

  160. He W, Nguyen H, Liu X, Nahrstedt K, Abdelzaher T (2008) iPDA: an integrity-protecting private data aggregation scheme for wireless sensor networks. In: IEEE MILCOM 2008, pp 1–7. doi:10.1109/MILCOM.2008.4753645

  161. Kursawe K, Danezis G, Kohlweiss M (2011) Privacy-friendly aggregation for the smart-grid. Privacy enhancing technologies, vol 6794. Springer, pp 175–191. doi:10.1007/978-3-642-22263-4_10

  162. Nicanfar H, Alasaad A, Talebifard P, Leung VCM (2013) Network coding based encryption system for advanced metering infrastructure. In: IEEE ICCCN, pp 1–7. doi:10.1109/ICCCN.2013.6614158

  163. Jin H, Uludag S, Lui KS, Nahrstedt K (2014) Secure data collection in constrained tree-based smart grid environments. In: 2014 IEEE international conference on smart grid communications (SmartGridComm): communications and networks to enable the smart grid (IEEE SmartGridComm’14 symposium—communications and networks). Venice, Italy (2014)

    Google Scholar 

  164. Uludag S, Lui KS, Ren W, Nahrstedt K (2014) Practical and secure machine-to-machine data collection protocol in smart grid. In: Workshop on security and privacy in machine-to-machine communications (M2MSec’14) in conjunction with IEEE conference on communications and network security (CNS). San Francisco, USA

    Google Scholar 

  165. Badra M, Zeadally S (2013) An improved Privacy Solution for the Smart Grid. Int J Netw Secur 17(1):225–232

    Google Scholar 

  166. Cloud Security Alliance (CSA), B.D.W.G. (2013) Expanded top ten big data security and privacy challenges. White Paper

    Google Scholar 

  167. Castelluccia C, Druschel P, Hübner SF, Gorniak S, Ikonomou D, Pasic A, Preneel B, Tschofenig H, Tirtea R (2011) Privacy, accountability and trust challenges and opportunities (The European Network and Information Security Agency (ENISA)). White Paper, url:https://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/pat-study

  168. Rottondi C, Barbato A, Verticale G (2014) A privacy-friendly game-theoretic distributed scheduling system for domestic appliances. In: 2014 IEEE international conference on smart grid communications (SmartGridComm). Venice, Italy

    Google Scholar 

  169. Egarter D, Prokop C, Elmenreich W (2014) Load hiding of household’s power demand. In: 2014 IEEE international conference on smart grid Communications (SmartGridComm): communications and networks to enable the smart grid (IEEE SmartGridComm’14 symposium—communications and networks). Venice, Italy

    Google Scholar 

  170. Mashima D, Roy A (2014) Privacy preserving disclosure of authenticated energy usage data. In: 2014 IEEE international conference on smart grid communications (SmartGridComm). Venice, Italy (2014)

    Google Scholar 

  171. Paverd A, Martin A, Brown I (2014) Privacy-enhanced bi-directional communication in the smart grid using trusted computing. In: 2014 IEEE international conference on smart grid communications (SmartGridComm). Venice, Italy

    Google Scholar 

  172. Yang L, Xue H, Li F (2014) Privacy-preserving data sharing in smart grid systems. In: 2014 IEEE international conference on smart grid communications (SmartGridComm). Venice, Italy

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suleyman Uludag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Uludag, S., Zeadally, S., Badra, M. (2015). Techniques, Taxonomy, and Challenges of Privacy Protection in the Smart Grid. In: Zeadally, S., Badra, M. (eds) Privacy in a Digital, Networked World. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-08470-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08470-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08469-5

  • Online ISBN: 978-3-319-08470-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics