Skip to main content

Effects of Domain Shapes and Mesh Discretization Error on the Morphological Evolution of Nonaqueous-Phase-Liquid Dissolution Fronts in Fluid-Saturated Porous Media

  • Chapter
  • First Online:
Physical and Chemical Dissolution Front Instability in Porous Media

Part of the book series: Lecture Notes in Earth System Sciences ((LNESS))

  • 573 Accesses

Abstract

In the field of contaminant hydrology, both land contamination and land remediation problems are often encountered. Land contamination is known as the distribution of chemical and pollutants on land sites, while land remediation is known as the cleanup of chemical and pollutants on land sites that causes health concerns to the humans and the environment. When nonaqueous phase liquids (NAPLs), such as trichloroethylene, ethylene dibromide, benzene, toluene and so forth (Miller et al. 1990), are released to groundwater, they can reside in the form of disconnected ganglia or blobs as residual saturations within the pores of porous media. This process belongs to the land contamination problem

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alt-Epping P, Smith L (2001) Computing geochemical mass transfer and water/rock ratios in submarine hydrothermal systems: implications for estimating the vigour of convection. Geofluids 1:163–181

    Article  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. American Elsevier Publishing Company, New York

    Google Scholar 

  • Chadam J, Hoff D, Merino E, Ortoleva P, Sen A (1986) Reactive infiltration instabilities. IMA J Appl Math 36:207–221

    Article  Google Scholar 

  • Chadam J, Ortoleva P, Sen A (1988) A weekly nonlinear stability analysis of the reactive infiltration interface. IMA J Appl Math 48:1362–1378

    Google Scholar 

  • Chen X, Jawitz JW (2008) Reactive tracer tests to predict nonaqueous phase liquid dissolution dynamics in laboratory flow chambers. Environ Sci Technol 42:5285–5291

    Article  Google Scholar 

  • Chen JS, Liu CW (2002) Numerical simulation of the evolution of aquifer porosity and species concentrations during reactive transport. Comput Geosci 28:485–499

    Article  Google Scholar 

  • Chen JS, Liu CW (2004) Interaction of reactive fronts during transport in a homogeneous porous medium with initial small non-uniformity. J Contam Hydrol 72:47–66

    Article  Google Scholar 

  • Chen JS, Liu CW, Lai GX, Ni CF (2009) Effects of mechanical dispersion on the morphological evolution of a chemical dissolution front in a fluid-saturated porous medium. J Hydrol 373:96–102

    Article  Google Scholar 

  • Christ JA, Ramsburg CA, Pennell KD, Abriola LM (2006) Estimating mass discharge from dense nonaqueous phase liquid source zones using upscaled mass transfer coefficients: an evaluation using multiphase numerical simulations. Water Resour Res 42:W11420. doi:10.1029/2006WR004886

    Article  Google Scholar 

  • Christ JA, Lemke LD, Abriola LM (2009) The influence of dimensionality on simulations of mass recovery from nonuniform dense non-aqueous phase liquid (DNAPL) source zones. Adv Water Resour 32:401–412

    Article  Google Scholar 

  • Daus AD, Frid EO, Sudicky EA (1985) Comparative error analysis in finite element formulations of the advection-dispersion equation. Adv Water Resour 8:86–95

    Article  Google Scholar 

  • DiFilippo EL, Carroll KC, Brusseau ML (2010) Impact of organic-liquid distribution and flow field heterogeneity on reduction in mass flux. J Contam Hydrol 115:14–25

    Article  Google Scholar 

  • Geller JT, Hunt JR (1993) Mass transfer from nonaqueous phase organic liquids in water-saturated porous media. Water Resour Res 29:833–845

    Article  Google Scholar 

  • Gerhard JI, Pang T, Kueper BH (2007) Time scales of DNAPL migration in sandy aquifers examined via numerical simulation. Ground Water 45:147–157

    Article  Google Scholar 

  • Grant GP, Gerhard JI (2007) Simulating the dissolution of a complex dense nonaqueous phase liquid zone: 1. Model to predict interfacial area. Water Resour Res 43:W12410. doi:10.1029/2007WR006038

  • Holzbecher EO (1998) Modeling density-driven flow in porous media. Springer, Berlin

    Book  Google Scholar 

  • Hong J, Hecker WC, Fletcher TH (1999) Predicting effectiveness factor for m-th order and langmuir rate equations in spherical coordinates. ACS Div Fuel Chem 44:1011–1015

    Google Scholar 

  • Imhoff PT, Miller CT (1996) Dissolution fingering during the solubilization of nonaqueous phase liquids in saturated porous media: 1 Model predictions. Water Resour Res 32:1919–1928

    Article  Google Scholar 

  • Imhoff PT, Jaffe PR, Pinder GF (1994) An experimental study of complete dissolution of a nonaqueous phase liquid in saturated porous media. Water Resour Res 30:307–320

    Article  Google Scholar 

  • Imhoff PT, Thyrum GP, Miller CT (1996) Dissolution fingering during the solubilization of nonaqueous phase liquids in saturated porous media: 2 Experimental observations. Water Resour Res 32:1929–1942

    Article  Google Scholar 

  • Imhoff PT, Farthing MW, Gleyzer SN, Miller CT (2002) Evolving interface between clean and nonaqueous phase liquid (NAPL)-contaminated regions in two-dimensional porous media. Water Resour Res 38:1093–1106

    Article  Google Scholar 

  • Imhoff PT, Farthing MW, Miller CT (2003a) Modeling NAPL dissolution fingering with upscaled mass transfer rate coefficients. Adv Water Resour 26:1097–1111

    Article  Google Scholar 

  • Imhoff PT, Mann AS, Mercer M, Fitzpatrick M (2003b) Scaling DNAPL migration from the laboratory to the field. J Contam Hydrol 64:73–92

    Article  Google Scholar 

  • Kalia N, Balakotaiah V (2009) Effect of medium heterogeneities on reactive dissolution of carbonates. Chem Eng Sci 64:376–390

    Article  Google Scholar 

  • Maji R, Sudicky EA (2008) Influence of mass transfer characteristics for DNAPL source depletion and contaminant flux in a highly characterized glaciofluvial aquifer. J Contam Hydrol 102:105–119

    Article  Google Scholar 

  • Miller CT, Poirier-McNeil MM, Mayer AS (1990) Dissolution of trapped nonaqueous phase liquids: mass transfer characteristics. Water Resour Res 26:2783–2796

    Article  Google Scholar 

  • Miller CT, Christakos TG, Imhoff PT, McBride JF, Pedit JA, Trangenstein JA (1998) Multiphase flow and transport modeling in heterogeneous porous media: challenges and approaches. Adv Water Resour 21:77–120

    Article  Google Scholar 

  • Morris MI, Ball RC (1990) Renormalization of miscible flow functions. J Phys A: Math Gen 23:4199–4209

    Article  Google Scholar 

  • Ormond A, Ortoleva P (2000) Numerical modeling of reaction-induced cavities in a porous rock. J Geophys Res 105:16737–16747

    Article  Google Scholar 

  • Ortoleva P, Chadam J, Merino E, Sen A (1987) Geochemical self-organization II: The reactive-infiltration instability. Am J Sci 287:1008–1040

    Article  Google Scholar 

  • Parker JC, Park E (2004) Modeling field-scale dense nonaqueous phase liquid dissolution kinetics in heterogeneous aquifers. Water Resour Res 40:W05109. doi:10.1029/2003WR002807

    Article  Google Scholar 

  • Powers SE, Abriola LM, Weber WJ Jr (1994) An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: transient mass transfer rates. Water Resour Res 30:321–332

    Article  Google Scholar 

  • Raffensperger JP, Garven G (1995) The formation of unconformity-type uranium ore deposits: coupled hydrochemical modelling. Am J Sci 295:639–696

    Article  Google Scholar 

  • Renard F, Gratier JP, Ortoleva P, Brosse E, Bazin B (1998) Self-organization during reactive fluid flow in a porous medium. Geophys Res Lett 25:385–388

    Article  Google Scholar 

  • Scheidegger AE (1961) General theory of dispersion in porous media. J Geophys Res 66:3273–3278

    Article  Google Scholar 

  • Seyedabbasi MA, Farthing MW, Imhoff PT, Miller CT (2008) The influence of wettability on NAPL dissolution fingering. Adv Water Resour 31:1687–1696

    Article  Google Scholar 

  • Soerens TS, Sabatini DA, Harwell JH (1998) Effects of flow bypassing and nonuniform NAPL distribution on the mass transfer characteristics of NAPL dissolution. Water Resour Res 34:1657–1673

    Article  Google Scholar 

  • Steefel CI, Lasaga AC (1990) Evolution of dissolution patterns: permeability change due to coupled flow and reaction. In: Melchior DC, Basset RL (eds) Chemical modeling in aqueous systems II, American Chemistry Society Symposium Series, vol 416, pp 213–225

    Google Scholar 

  • Steefel CI, Lasaga AC (1994) A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am J Sci 294:529–592

    Article  Google Scholar 

  • Tan CT, Homsy GM (1987) Stability of miscible displacements in porous media: radial source flow. Phys Fluids 30(5):1239–1245

    Article  Google Scholar 

  • Willson CS, Hall JL, Miller CT, Imhoff PT (1999) Factors affecting bank formation during surfactant-enhanced mobilization of residual NAPL. Environ Sci Technol 33:2440–2446

    Article  Google Scholar 

  • Yang Z, Yortsos YC (1998) Effect of no-flow boundaries on viscous fingering in porous media of large aspect ratio. Soc Petrol Eng J 3:285–292

    Google Scholar 

  • Yeh GT, Tripathi VS (1991) A model for simulating transport of reactive multispecies components: model development and demonstration. Water Resour Res 27:3075–3094

    Article  Google Scholar 

  • Zhang C, Werth CJ, Webb AG (2007) Characterization of NAPL source zone architecture and dissolution kinetics in heterogeneous porous media using magnetic resonance imaging. Environ Sci Technol 41:3672–3678

    Article  Google Scholar 

  • Zhao C, Steven GP (1996a) A posteriori error estimator/corrector for natural frequencies of thin plate vibration problems. Comput Struct 59:949–963

    Article  Google Scholar 

  • Zhao C, Steven GP (1996b) An asymptotic formula for correcting finite element predicted natural frequencies of membrane vibration problems. Commun Numer Methods Eng 11:63–73

    Article  Google Scholar 

  • Zhao C, Steven GP (1996c) A practical error estimator for predicted natural frequencies of two-dimensional elastodynamic problems. Eng Comput 13:19–37

    Article  Google Scholar 

  • Zhao C, Hobbs BE, Hornby P, Ord A, Peng S, Liu L (2008a) Theoretical and numerical analyses of chemical-dissolution front instability in fluid-saturated porous rocks. Int J Numer Anal Meth Geomech 32:1107–1130

    Google Scholar 

  • Zhao C, Hobbs BE, Ord A, Hornby P, Peng S (2008b) Effect of reactive surface areas associated with different particle shapes on chemical-dissolution front instability in fluid-saturated porous rocks. Transp Porous Media 73:75–94

    Google Scholar 

  • Zhao C, Hobbs BE, Ord A, Hornby P, Peng S (2008c) Morphological evolution of three-dimensional chemical dissolution front in fluid-saturated porous media: a numerical simulation approach. Geofluids 8:113–127

    Google Scholar 

  • Zhao C, Hobbs BE, Ord A (2009) Fundamentals of computational geoscience: numerical methods and algorithms. Springer, Berlin

    Google Scholar 

  • Zhao C, Hobbs BE, Ord A, Peng S (2010a) Effects of mineral dissolution ratios on chemical-dissolution front instability in fluid-saturated porous media. Transp Porous Media 82:317–335

    Google Scholar 

  • Zhao C, Hobbs BE, Ord A (2010b) Theoretical analyses of the effects of solute dispersion on chemical-dissolution front instability in fluid-saturated porous rocks. Transp Porous Media 84:629–653

    Google Scholar 

  • Zhao C, Hobbs BE, Ord A (2010c) Theoretical analyses of nonaqueous-phase-liquid dissolution induced instability in two-dimensional fluid-saturated porous media. Int J Numer Anal Meth Geomech 34:1767–1796

    Google Scholar 

  • Zhao C, Hobbs BE, Regenauer-Lieb K, Ord A (2011) Computational simulation for the morphological evolution of nonaqueous-phase-liquid dissolution fronts in two-dimensional fluid-saturated porous media. Comput Geosci 15:167–183

    Article  Google Scholar 

  • Zhao C, Hobbs BE, Ord A (2012) Effects of domain shapes on the morphological evolution of nonaqueous-phase-liquid dissolution fronts in fluid-saturated porous media. J Contam Hydrol 138–139:123–140

    Article  Google Scholar 

  • Zienkiewicz OC (1977) The finite element method. McGraw-Hill, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongbin Zhao .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhao, C. (2014). Effects of Domain Shapes and Mesh Discretization Error on the Morphological Evolution of Nonaqueous-Phase-Liquid Dissolution Fronts in Fluid-Saturated Porous Media. In: Physical and Chemical Dissolution Front Instability in Porous Media. Lecture Notes in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-08461-9_10

Download citation

Publish with us

Policies and ethics