Skip to main content

Synthesis of Surface Active Monomers

  • Chapter
  • First Online:
Surface Active Monomers

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 613 Accesses

Summary

This chapter focuses on the synthesis techniques of surface-active monomers. Synthesis of various types of corresponding compounds with different polymerizable links is reviewed. The chapter focuses on synthesis of surface-active monomers containing maleic, maleimide, (meth)acrylic, and styrene polymerizable fragments. The survey highlights these synthetic techniques including recent claims and publications. Nevertheless, it should firstly furnish the general information and concept of chemistry and main properties of surface-active monomers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ottewill RH, Satgurunathan R (1988) Non-ionic lattices in aqueous media. Part 2. Stability to add electrolytes. J Colloid Polym Sci 266:543–547

    Google Scholar 

  2. Capek I (2000) Surface active properties of polyoxyethylene macromonomers and their role in radical polymerization in disperse systems. Adv Colloid Interface Sci 88:295–357

    Google Scholar 

  3. Guyot A, Tauer K (1994) Reactive surfactants in emulsion polymerization. Adv Polym Sci 111:43–65

    Google Scholar 

  4. Tauer K, Goebel KH, Kosmella S et al (1988) Neuere Entwicklungen bei der Synthese von Polymerdispersionen. Plaste Kautschuk 35:373–378

    Google Scholar 

  5. Tauer K, Goebel KH, Kosmella S et al (1990) Emulsion polymerization in the presence of polymerizable emulsifiers and surface active initiators. Makromol Chem, Macromol Symp 31:107–121

    Google Scholar 

  6. Holmberg K (1992) Polymerizable surfactants. Prog Org Coat 20:235–241

    Google Scholar 

  7. Nagai K (1996) Radical polymerization and potential applications of surface-active monomers. Trends Polym Sci 4:122–126

    Google Scholar 

  8. Asua JM, Schoonbrood HA (1998) Reactive surfactants in heterophase polymerization. Acta Polym 49:671–686

    Google Scholar 

  9. Holmberg K (1998) Novel Surfactants: Preparation, Applications, and Biodegradability. Marcell Dekker, New York

    Google Scholar 

  10. Asua JM (1997) Polymeric Dispersions: Principles and Applications. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  11. Tsaur SL, Fitch RM (1987) Preparation and properties of polystyrene model: I. Preparation of surface active monomers and model colloids derived therefrom. J Colloid Interface Sci 115:450–462

    Google Scholar 

  12. Laschewsky A (1995) Molecular concepts, self-organisation and properties of polysoaps. Adv Polym Sci 124:59–86

    Google Scholar 

  13. Borzenkov M et al (2011) The obtaining of functional surface-active monomers based on tert-butylperoxy-6-hydroxyhexanoate. Chem Chem Technol 5:363–366

    Google Scholar 

  14. Busci A, Forkada J, Gibanel S (1998) Monodisperse polysterene latex particles functionalized by the macromonomer technique. Macromolecules 31:581–620

    Google Scholar 

  15. Dahlgren AG, Claesson PM, Audebert R (1994) Highly charged cationic polyelectrolytes on mica: influence of polyelectrolyte concentration on surface forces. J Colloid Interface Sci 166:343–349

    Google Scholar 

  16. Kohut AM (2006) Sintez i vlastuvosti poverhnevo-aktuvnuh monomeriv i peroxydiv (Synthesis and properties of surface active monomers and peroxides). Dissertation, Lviv Polytechnic National University

    Google Scholar 

  17. O’Donell J, Schumacher GE, Antonucci JM, Skrtic D (2009) Structure-composition-property relationships in polymeric amorphous calcium phosphate-based dental composites. Materials 2:1929–1954

    Google Scholar 

  18. Tang MX, Szoka FC (1997) The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther 8:823–832

    Google Scholar 

  19. Hevus O, Kohut A, Fleychuk R, Zaichenko A, Pashinnik V, Shermolovich Y (2007) Novel surface active maleate monomers for obtaining non–emulsified latexes. React Eng 2:F5–F6

    Google Scholar 

  20. Weiss P, Gerecht JF, Krems IJ (1959) Graft copolymers from poly(styrene co dimethyl maleate) and poly(styrene co allyl acetate). J Polym Sci 35:343–354

    Google Scholar 

  21. Zaichenko O, Mitina N et al (2010) Oligoperoxide based physically detectable nanocomposites for cell targeting, visualization and treatment. In: AIP Conference Proceedings, vol 1275, pp 178–182

    Google Scholar 

  22. Zaichenko O et al (2008) Novel functional nanoscale composites on the basis of oligoperoxide surfactants: syntheses and biomedical applications. Biotechnology 1:82–94

    Google Scholar 

  23. Craspy D, Landfester K (2010) Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers. Beilstein J Org Chem 6:1132–1148

    Google Scholar 

  24. Hevus OI (2010) Funkcionalni poverhnevo-aktuvni peroxidy I monomery yak reagentu dlia oderjannia reakciynozdatnuh modufikatoriv poverhni (Functional surface active peroxides and monomers for creation of reactive surface modifiers). Dissertation, Lviv Polytechnic National University

    Google Scholar 

  25. Voronov A, Kohut A et al (2006) Invertible architectures from amphiphilic polyesters. Langmuir 22:1946–1948

    Google Scholar 

  26. Boysen M (2007) Carbohydrates as synthetic tools in organic chemistry. Chem Eur J 13:8648–8659

    Google Scholar 

  27. Ohnol K, Fukuda T, Kitano H (1998) Free radical polymerization of a sugar residue-carrying styryl monomer with a lipophilic alkoxyamine initiator: synthesis of a well-defined novel glycolipid. Macromol Chem Phys 199:2193–2197

    Google Scholar 

  28. Jutz O et al (2005) Synthesis of hyperbranched glycopolymers via self-condensing atom transfer radical copolymerization of a sugar-carrying acrylate. Macromolecules 9:38

    Google Scholar 

  29. Wang Q, Dordick JS, Linhardt RJ (2002) Synthesis and application of carbohydrate-containing polymers. Chem Mater 14:3232–3244

    Google Scholar 

  30. Stanek LG, Heilmann SM, Gleason WB (2006) Preparation and copolymerization of a novel carbohydrate containing monomer. Carbohydr Polym 65:552–556

    Google Scholar 

  31. Narain R, Jhury D (2002) Synthesis and polymerization of novel vinylgluconamides. Polym Int 51:85

    Google Scholar 

  32. Narain R (ed) (2011) Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaces, Dendrimers, Nanoparticles, and Hydrogels. Wiley, Hoboken

    Google Scholar 

  33. Regene SL et al (1983) Polymerized-depolymerized vesicles. A reversible phosphatidylcholine-based membrane. J Am Chem Soc 105:6354–6355

    Google Scholar 

  34. Birdi KS (1989) Lipid and Biopolymer Monolayers at Liquid Interfaces. Plenum Press, London

    Google Scholar 

  35. Fendler JH (1982) Membrane Mimetic Chemistry: Characterization and Applications of Micelles, Microemulsions, Monolayers, Bilayers, Vesicles, Host–Guest Systems and Polyions. Wiley, New York

    Google Scholar 

  36. Huges SR et al (1996) Two-hybrid system as a model to study the interaction of β-amyloid peptide monomers. Proc Natl Acad Sci USA 93:2065–2070

    Google Scholar 

  37. Yamin R et al (2009) Acyl peptide hydrolase degrades monomeric and oligomeric amyloid-beta peptide. Mol Neurodegeneration 4:33

    Google Scholar 

  38. Haeshin L, Park TG (2003) A novel method for indentifying PEGylation sites of protein using boitinylated PEG derivatives. J Pharm Sci 93:97–103

    Google Scholar 

  39. Ringsdorf J et al (1990) Specific interactions of proteins with functional lipid monolayers—ways of simulating biomembrane process. Angew Chem 29:1269–1285

    Google Scholar 

  40. Gros L, Ringsdorf J, Schupp H (1981) Polymere modellmemmbranen. Angew Chem 93:105–109

    Google Scholar 

  41. Zaicev SY (2006) Supramolekularnye sistemy na granice razdela faz kak model membran i nanomaterialy (Supramolecular systems at interfaces as a model of membranes and nanomaterilas) Moscow state academy of veterinary and biotechnology, Moscow

    Google Scholar 

  42. Ivancev SS, Pavluchenko VN, Byrdina NA (1987) Elementary reactions of the emulsions polymerization of styrene with the localization of radical formation acts at the interface. J Polym Sci, Part A: Polym Chem 25:47–62

    Google Scholar 

  43. Voronov S et al (1996) Peroxidation of the interface of colloidal systems as new possibilities for design of compounds. Progr Colloid Polym Sci 101:189–193

    Google Scholar 

  44. Voronov S et al (2000) Polyperoxide surfactants for interface modification and compatibilization of polymer colloidal systems. I. Synthesis and properties of polyperoxide surfactants. J Appl Polym Sci 76:1217–1227

    Google Scholar 

  45. Taued K, Kosmella S (1993) Synthesis, characterization and application of surface active intiators. Polym Int 30:253–258

    Google Scholar 

  46. Stoffelbach F (2008) Use of a simple surface active initiator in controlled/living free-radical miniemulsion polymerization under AGET and ARGET ATRP conditions. Chem Comm. doi:10.1039/b809163c

    Google Scholar 

  47. Cheng CJ et al (2013) Facile synthesis of gemini surface active ATRP initiator and its use in soap-free AGET ATRP mini-emulsion polymerization. Chem Papers 67:336–341

    Google Scholar 

  48. Kohut A et al (2007) Macroinitiators on the basis of new peroxide surface active monomers. Chem Chem Technol 1:83–86

    Google Scholar 

  49. Zicmanis A et al (1997) Synthesis of new alkyl maleates ammonium derivatives and their uses in emulsion polymerization. Colloid Polym Sci 275:1–8

    Google Scholar 

  50. Abele S et al (1999) Cationic and zwitterionic polymerizable surfactants: quaternary ammonium dialkyl maleates. 1. Synthesis and characterization. Langmuir 15:1033–1044

    Google Scholar 

  51. Xu J, Li G, Zhou G, Yao F (2001) Synthesis and properties of novel cationic maleic diester polyerizable surfactants. Chin Chem Lett 12:523–526

    Google Scholar 

  52. Liangxian H et al (2008) Preparation and properties of a novel alkyl ethoxy carboxylate surfactant (CNKI). Speciality Petrochemicals 6:58

    Google Scholar 

  53. Yoshimura T, Koide Y, Shosenji H, Esumi K (2002) Preparation and surface active properties of telomere type anionic surfactant from maleic anhydride. J Surfactants Deterg 5:257–262

    Google Scholar 

  54. Rasika MS, Manohar RS (2006) Synthesis of amphoteric surfactants via esterification process. J Dispers Sci Technol 27:407–411

    Google Scholar 

  55. Yang SF et al (2005) St-Ba copolymer emulsions prepared by using novel cationic maleic dialkyl polimerizable emulsifier. Eur Polym J 41:2973–2979

    Google Scholar 

  56. Weihong L, Lai YC (2009) Novel polymerizable surface active monomers with both fluorine-containing groups and hydrophilic groups. US Patent 8071704 B2, 9 Apr 2009

    Google Scholar 

  57. Pich A et al (2005) Polymeric particles prepared with fluorinated surfmer. Polymer 46:1323–1330

    Google Scholar 

  58. Klimenkovsa I, Zhukovskaa I, Uzulinaa I, Zicmanis A (2003) Maleic diamide polymerizable surfactants. Applications in emulsion polymerization. C R Chim 6:1295–1304

    Google Scholar 

  59. Chen KM, Tsai CC (1988) Synthesis and surface active properties of maleic anhydride-polyethylene glycol-phthalic anhydride polymeric surfactants. J Am Oil Chem Soc 8:1346–1349

    Google Scholar 

  60. Vuitsyk LB (2009) Sintez monomeriv i iniciatoriv na osnovi mono- ta polisaharydiv (Synthesis of monomers and initiators based on mono- and polysaccharides). Dissertation, Lviv Polytechnic National University

    Google Scholar 

  61. Hevus O, Kohut A, Fleychuk R, Mitina N, Zaichenko O (2007) Colloid systems based on the basis of novel reactive surfmers. Macromolecular symposia, selected contributions from the 3rd international symposium on react 2007 254:117–121

    Google Scholar 

  62. Kohut AM, Hevus OI, Voronov SA (2004) Synthesis and properties of 4-(ω-methoxyoligodimethylsiloxanyl)butylmaleate; a new surfmer. J Appl Polym Sci 93:310–313

    Google Scholar 

  63. Borzenkov M, Hevus O (2013) Synthesis and properties of novel surface active monomers containing phosphate group. In: Abstracts of European polymer congress EPF-2013, Pisa, Italy, 16–21 June 2013

    Google Scholar 

  64. Buller K, Pearson D (1973) Organic Synthesis, vol 2. Mir, Moscow Russian Translation

    Google Scholar 

  65. Borzenkov MM (2012) Sintez i vlastuvosti poverhnevo-aktuvnyh monomeriv—pohidnyh hydroxy- ta aminocarbonovyh kislot (Synthesis and properties of surface active monomers based on derivatives of hydroxy and amino carboxylic acids). Dissertation, Lviv Polytechnic National University

    Google Scholar 

  66. Borzenkov MM, Hevus OI (2012) Novel peroxide containing maleate surface active monomers for obtaining reactive polymers. Macromol Symposia 315:60–65

    Google Scholar 

  67. Atta AM, Dyab AK, Allohedan HA (2013) A novel route to prepare highly surface activate nanogel particles based on nonaqueous emulsion polymerization. Polym Adv Technol 24:986–996

    Google Scholar 

  68. Cava MP et al (1974) N-phenylmaleimide. Org Synth 5:944

    Google Scholar 

  69. Huang CD, Tliba O (2005) G-protein-coupled receptor agonists differentially regulate basal or tumor necrosis factor-alpha-stimulated activation of interleukin-6 and RANTES in human airway smooth muscle cells. J Biomed Sc 12:763–776

    Google Scholar 

  70. Trivedi B (1982) Maleic Anhydride. Culberston, New York

    Google Scholar 

  71. Kim Y et al (2008) Efficient site-specific labeling of proteins via cysteins. Biocon Chem 19:786–791

    Google Scholar 

  72. Rich DH et al (1975) Alkylating derivatives of amino acids and peptides. Synthesis of N-maleoyl acids. J Med Chem 18:1004

    Google Scholar 

  73. Skrifvars M, Schmidt HW (1995) Synthesis of N-(2,5-Dicarboxyphenyl) maleimide. Synth Commun 25:1809–1815

    Google Scholar 

  74. Kozlowski A (2012) Compositions comprising conjugates and maleamic acid-terminated, water-soluble polymers. US patent 20120271000 A1, 25 Oct 2012

    Google Scholar 

  75. Ananda K et al (2008) Analysis of functionalization of methoxy-PEG as maleimide-PEG. Anal Biochem 374:231–242

    Google Scholar 

  76. Daniel HD et al (2005) Site-specific PEGylation of engineered cystein analogs of recombinant human granulocyte-macrophage colony stimulating factor. Bioconjug Chem 16:1291–1298

    Google Scholar 

  77. Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54:459–476

    Google Scholar 

  78. Lu Y et al (2008) Effect of PEGylation on the solution conformation of antibody fragments. J Pharm Sci 97:2062–2079

    Google Scholar 

  79. Felix FS et al (2011) In situ maleimide bridging of disulfides and a new approach to protein PEGylation. Bioconjug Chem 22:132–136

    Google Scholar 

  80. Prabhakaran M, Manjula BN, Acharya SA (2006) Molecular modeling studies of surface decoration of hemoglobin by maleimide PEG. Artif Cells Blood Substit Immobil Biotechnol 34:381–393

    Google Scholar 

  81. Accardo A et al (2011) Naposomes: a new class of peptide-derivatized, target-selective multimodal nanoparticles for imaging therapeutic applications. Ther Deliv 2:235–257

    Google Scholar 

  82. Liebher RB et al (2012) Maleimide activation of photon upconverting nanoparticles for bioconjugation. Nanotechnology 23. doi:10.1088/0957-4484/23/48/485103

  83. Dispinar T, Sanyal R, Sanyal A (2007) A Diels–Alder/retro Diels–Alder strategy to synthesize polymers bearing maleimide-side chains. J Polym Sci, Part A: Polym Chem 45:4545–4551

    Google Scholar 

  84. Gandini A (2013) The furan/maleimide Diels–Alder reaction. A versatile click-unclick tool in macromolecular synthesis. Prog Polym Sci 38:1–29

    Google Scholar 

  85. Ganapathippan S, Zhou ZL (2011) Maleimide-containing latex dispersions. US patent, 7910649 B2, 22 Mar 2011

    Google Scholar 

  86. Tsotumo O et al (1994) Synthesis and polymerization of maleimides containing cholesteryl group. Polym J 26:1332–1344

    Google Scholar 

  87. Goutayer M et al (2010) Tumor targeting of fictionalized lipid nanoparticles: assessment by in vivo fluorescence imaging. J Pharm Biopharm 75:137–147

    Google Scholar 

  88. Cianga L, Yagci Y (2002) Synthesis and characterization of thiophene-substituted N-phenyl maleimide polymers by photoinduced radical polymerization. J Polym Sci, Part A: Polym Chem 40:995–1004

    Google Scholar 

  89. McElhanon J et al (2005) Thermally cleavable based on furan-meleimide Diels–Alder adducts. Langmuir 8:3259–3266

    Google Scholar 

  90. Thanamongkollit K et al (2012) Highly porous polymeric foam of maleimide-terminated poly(arylene ether sulfone) oligomers via high internal phase emulsions. Adv Sci Technol 77:165–171

    Google Scholar 

  91. Greene BW, Sheetz DP, Filler TD (1970) In situ polymerization of surface-active agents on latex particles. I. Preparation and characterization of styrene-butadiene latexes. J Colloid Interf Sci 32:90–95

    Google Scholar 

  92. Juang MS, Krieger IM (1976) Emulsifier-free emulsion polymerization with ionic comonomer. J Polym Sci, Part A: Polym Chem 14:2089–2107

    Google Scholar 

  93. Maliukova EB et al (1991) Emulsionnaya sopolimerizacia vinilovuh I dienovuh monomerov s poverhnostno-aktivnymi somonomerami (Emulsion copolymerization of vinyl and dienic monomers with surface active comonomers). High Mol Compd 33:1469–1475

    Google Scholar 

  94. Zaicev SY (2010) Supermolecularnye nanorazmernue sistemy na granice razdela faz. Koncepcyi i perspectivy dlia bionanotechnologiy (Supermolecular nanosystems at interface. Conceptions and opportunities for bionanotechnology). Lenand, Moscow

    Google Scholar 

  95. Zaicev SY (2009) Membrannie nanostructury na osnove biologiceski aktivnyh soedineniy dlia biotechnologii (Membrane nanostructures based on biological active compounds for biotechnology). Nanoreviews 4:46

    Google Scholar 

  96. Zaiceva LG, Ovchinnikova TV, Grinevich VA (2009) Import belkov v mitohondriah (Import of proteins in mitochondrion). Bioorg Chem 26:643–661

    Google Scholar 

  97. Shtilmann MI (2006) Polymery Medico-Biologiceskogo Znacenia (Polymers of Bio-Medical Application). Academbook, Moscow

    Google Scholar 

  98. Zaitsev SY, Baryshnikova EA, Veresschetin VP (1997) Polymerization of the 12-methacryloyloxydodecanoic acid and a corresponding phospholipid in monolayers at the liquid-gas interfaces. Macromol Chem Macromol Symp 113:197

    Google Scholar 

  99. Ulman A (1991) An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly. Academic Press, Boston

    Google Scholar 

  100. Zaitsev SY, Moebius D (1994) Monolayers of Na, K-adenosine triphosphotase at the gas liquid interface. Thin Solid Films 244:890–894

    Google Scholar 

  101. Melehova EM, Kurochkin IN (1990) Teoreticeskoe rasmotrenie kineticeskih zakonomernostei processov vzaimodeistvia system vtoricnyh messehgerov pri aktivacyi kletki vneshnim himiceskim signalom (Theoretical basis of kinetics process of interaction of secondary messengers during activation of cell by external chemical signal). Mol Biol 24:1261

    Google Scholar 

  102. Kohut A, Hevus O, Voronov S (2000) Copolymers on the basis of ω-aminoalkyl acrylates and quaternary ammonium salts. In: Abstracts of Polish–Ukrainian conference on polymers of special application, Radom, Poland

    Google Scholar 

  103. Black WA et al (1969) The synthesis of polymerizable vinyl sugars. Makromol Chem 122:244

    Google Scholar 

  104. Narain R, Armes S (2003) Synthesis and aqueous solutions properties of novel sugar methacrylate based homopolymers and block copolymers. Biomacromolecules 4:1746–1758

    Google Scholar 

  105. Borzenkov M, Hevus O (2014) Synthesis of novel surface active methacrylate monomers based on ε-caprolactone. Chem Chem Technol 8:141–146

    Google Scholar 

  106. Klee EJ, Lehmann U (2010) Novel 2-(ω-phosphonooxy-2-oxaalkyl)acrylate monomers for self-etching self-priming one part adhesive. Beilstein J Org Chem 6:766–772

    Google Scholar 

  107. Shalaby S, Ikada Y, Langer R (1993) Polymers of biological and biomedical significance. ACS Pub 540:191

    Google Scholar 

  108. Cho HG (2010) Preparation and characterization of novel acrylic monomers. J Appl Polym Sci 116:736–742

    Google Scholar 

  109. Vries AR (2006) Novel monomer for hydrophilic acrylic copolymers and their novel properties. Dissertation, University of Stanford, USA

    Google Scholar 

  110. Li W, Matjaszewski K (2011) Cationic surface-active monomers as reactive surfactants for AGET Emulsion ATRP of n-butyl methacrylate. Macromolecules 44:5578

    Google Scholar 

  111. Hamid MS, Sherington DC (1987) Novel quaternary ammonium amphiphilyc (meth)acrylates: 2. Thermally and photochemically initiated polymerization. Polymer 28:332–339

    Google Scholar 

  112. Luo N et al (2002) Synthesis of a novel methacrylic monomer iniferter and its application in surface photografting on crosslinked polymer substrates. J Polm Sci. Part A 40:1885

    Google Scholar 

  113. Pekel N et al (2004) Synthesis and characterization of poly(N-vinylimidazole-co-acrylonitrile) and determination of monomers reactivity ratios. Macromol Chem Physic 205:1039

    Google Scholar 

  114. Thomas R et al (1997) Preparation and surface properties of acrylic polymers containing fluorinated monomers. Macromolecules 30:2883–2890

    Google Scholar 

  115. Ishihara K et al (2006) Water structure and improved mechanical properties of phospholipid polymer hydrogel with phosphorylcholine centered intermolecular cross-linker. Polymer 47:1390

    Google Scholar 

  116. Ishihara K et al (2006) UCST-type cononosolvency behavior of poly (2-methacryloxyethyl phosphorylcholine) in the mixture of water and ethanol. Polym J 40:479–483

    Google Scholar 

  117. Senhaj O et al (2004) Synthesis and characterization of new methacrylic phosphonated surface active monomer. Macromol Chem Phys 205:1039

    Google Scholar 

  118. Hevus I, Pikh Z (2007) Novel surfactants for creating reactive polymers. Macromol Symposia 1:103–108

    Google Scholar 

  119. Choi SW (2013) Bis(vinylcyclopropane) and bis(methacrylate) monomers with cholesteryl group for dental composites. e-Polymers 5:820–831

    Google Scholar 

  120. He J et al (2011) Synthesis of methacrylate monomers with antibacterial effects against S Mutans. Macromolecules 16:9755–9763

    Google Scholar 

  121. Al-Sabagh AM (2012) Novel polymerizable nonionic surfactants (surfmers) corporate with alkenylsuccinic anhydride: synthesis, surface, and thermodynamic properties. J Disp Sci Tech 33:1458–1469

    Google Scholar 

  122. Sakai K et al (2009) Polymerizable anionic gemeni surfactants: physicochemical properties in aqueous solution and polymerization behavior. J Oleo Sci 58:403–413

    Google Scholar 

  123. Ma L et al (2014) Synthesis and micellar behaviors of an anionic polymerizable surfactant. J Chin Chem Soc. doi:10.1002/jccs.201300372

    Google Scholar 

  124. Ilan AH (1992) Low-temperature transmission electron microscopy and differential scanning calorimetry characterization of latexes stabilized with surface active block oligomers. Polymer 33:2043–2050

    Google Scholar 

  125. Busci A et al (1998) Monodisperse polysterene latex particles functionalized by the macromonomer technique. Macromolecules 31:581–620

    Google Scholar 

  126. Chao D, Itsuno S, Ito K (1991) Poly(ethylene oxide) macromonomers. Synthesis and polymerization of macromonomers carrying styryl end groups with enhanced hydrophobicity. Polym J 23:1045–1052

    Google Scholar 

  127. Ito K, Tanaka K, Tanaka H (1991) Poly(ethylene oxide) macromonomers. Micellar polymerization in water. Macromolecules 24:2348–2354

    Google Scholar 

  128. Soula O et al (1993) Styrenic surfmer in emulsion copolymerization of acrylic monomers. Copolymerization and film properties. J Polym Sci Part A Polym Chem Ed 37:4202–4217

    Google Scholar 

  129. Narain R, Jhury D, Wulff G (2002) Synthesis and characterization of polymers on 4-vinylphenylglucitiol. Eur Polym J 38:273

    Google Scholar 

  130. Klein J, Herzog D, Hajibegli A (1985) Polyvinylsaccharides. Synthesis and characterization of new polyvinylsaccarides of the urea type. Makromol Chem Rapid Commun 6:675

    Google Scholar 

  131. Borzenkov M et al (2012) Synthesis and polymerizable properties of novel cationic surface active monomers based on derivatives of ω-bromo and ω-amino carboxylic acids. In: Ukrainian–Polish conference on polymers of special applications, Radom, 24–27 Sept 2012

    Google Scholar 

  132. Nagasaki Y, Takahashi T, Tsuruta T (1990) Synthesis of novel functional styrene monomers having trimethylsilyl and hydroxyalkyl groups by the reaction between 4-vinylbenzyllithium derivatives and oxiranes. Die Makromolekulare Chemie 191:2297

    Google Scholar 

  133. Ocampo-Fernandez M et al (2009) Synthesis and characterization of diethyl-p-vinylbenzyl phosphonate monomer: precursor for ion exchange polymers for fuel cells. Superficies y Vacio 22:6–10

    Google Scholar 

  134. Wu H, Kawaguchi S, Ito K (2004) Synthesis and polymerization of tale-type polymerizable surfactants and hydrophobic counter-anion induced association of polyelectrolytes. Coll and Polym Sci 282:1365–1373

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykola Borzenkov .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Borzenkov, M., Hevus, O. (2014). Synthesis of Surface Active Monomers. In: Surface Active Monomers. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-08446-6_1

Download citation

Publish with us

Policies and ethics