Interacting with Networks of Mobile Agents

  • Magnus EgerstedtEmail author
  • Jean-Pierre de la Croix
  • Hiroaki Kawashima
  • Peter Kingston
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


How should human operators interact with teams of mobile agents, whose movements are dictated by decentralized and localized interaction laws? This chapter connects the structure of the underlying information exchange network to how easy or hard it is for human operators to influence the behavior of the team. “Influence” is understood both in terms of controllability, which is a point-to-point property, and manipulability, which is an instantaneous influence notion. These two notions both rely on the assumption that the user can exert control over select leader agents, and we contrast this with another approach whereby the agents are modeled as particles suspended in a fluid, which can be “stirred” by the operator. The theoretical developments are coupled with multirobot experiments and human user-studies to support the practical viability and feasibility of the proposed methods.


Multi-agent robotics Networked control Human–robot interactions 


  1. 1.
    Bicchi, A., Prattichizzo, D.: Manipulability of cooperating robots with unactuated joints and closed-chain mechanisms. IEEE Trans. Robot. Autom. 16(4), 336–345 (2000) CrossRefGoogle Scholar
  2. 2.
    Bicchi, A., Melchiorri, C., Balluchi, D.: On the mobility and manipulability of general multiple limb robots. IEEE Trans. Robot. Autom. 11(2), 215–228 (1995) CrossRefGoogle Scholar
  3. 3.
    Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks. A Mathematical Approach to Motion Coordination Algorithms. Princeton University Press, Princeton (2009) zbMATHGoogle Scholar
  4. 4.
    de la Croix, J.P., Egerstedt, M.: Controllability characterizations of leader-based swarm interactions. In: AAAI Symposium on Human Control of Bio-Inspired Swarms, Arlington, DC, Nov. 2012 (2012) Google Scholar
  5. 5.
    Egerstedt, M.: Controllability of networked systems. In: Mathematical Theory of Networks and Systems, Budapest, Hungary, 2010, pp. 57–61 (2010) Google Scholar
  6. 6.
    Egerstedt, M., Martini, S., Cao, M., Camlibel, K., Bicchi, A.: Interacting with networks: how does structure relate to controllability in single-leader consensus networks? IEEE Control Syst. Mag. 32(4), 66–73 (2012) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Eren, T., Belhumeur, P.: A framework for maintaining formations based on rigidity. In: Proc. 15th IFAC World Congress, pp. 2752–2757 (2002) Google Scholar
  8. 8.
    Fax, J.A., Murray, R.M.: Graph Laplacian and stabilization of vehicle formations. In: Proc. 15th IFAC World Congress (2002) Google Scholar
  9. 9.
    Girden, E.R.: ANOVA: Repeated Measures. Sage, Thousand Oaks (1991) Google Scholar
  10. 10.
    Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, New York (2001) CrossRefzbMATHGoogle Scholar
  11. 11.
    Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In: Hancock, A., Meshkati, N. (eds.) Human Mental Workload. North-Holland, Amsterdam (1988) Google Scholar
  12. 12.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ji, M., Egerstedt, M.: Distributed coordination control of multi-agent systems while preserving connectedness. IEEE Trans. Robot. 23(4), 693–703 (2007) CrossRefGoogle Scholar
  14. 14.
    Ji, M., Azuma, S., Egerstedt, M.: Role assignment in multi-agent coordination. Int. J. Assist. Robot. Mechatron. 7(1), 32–40 (2006) Google Scholar
  15. 15.
    Kawashima, H., Egerstedt, M.: Approximate manipulability of leader-follower networks. In: IEEE Conference on Decision and Control and European Control Conference, pp. 6618–6623 (2011) CrossRefGoogle Scholar
  16. 16.
    Martini, S., Egerstedt, M., Bicchi, A.: Controllability decompositions of networked systems through quotient graphs. In: IEEE Conference on Decision and Control, Cancun, Mexico, Dec. 2008, pp. 2717–2722 (2008) Google Scholar
  17. 17.
    Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods in Multiagent Networks. Princeton University Press, Princeton (2010) zbMATHGoogle Scholar
  18. 18.
    Ogren, P., Egerstedt, M., Hu, X.: A control Lyapunov function approach to multi-agent coordination. IEEE Trans. Robot. Autom. 18(5), 847–851 (2002) CrossRefGoogle Scholar
  19. 19.
    Olfati-Saber, R., Murray, R.M.: Distributed structural stabilization and tracking for formations of dynamic multi-agents. In: Proc. 41st IEEE Conf. Decision Control, Dec. 2002, vol. 1, pp. 209–215, (2002) Google Scholar
  20. 20.
    Olfati-Saber, R., Murray, R.M.: Consensus protocols for networks of dynamic agents. In: American Control Conference, Denver, CO, June 2003, pp. 951–956 (2003) Google Scholar
  21. 21.
    Rahmani, A., Ji, M., Mesbahi, M., Egerstedt, M.: Controllability of multi-agent systems from a graph-theoretic perspective. SIAM J. Control Optim. 48(1), 162–186 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ren, W., Beard, R.W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Reynolds, C.: Flocks, herds and schools: a distributed behavioral model. Proc. ACM SIGGRAPH 21(4), 25–34 (1987) CrossRefGoogle Scholar
  24. 24.
    Roth, B.: Rigid and flexible frameworks. Am. Math. Mon. 88(1), 6–21 (1981) CrossRefzbMATHGoogle Scholar
  25. 25.
    Tanner, H., Jadbabaie, A., Pappas, G.J.: Flocking in fixed and switching networks. IEEE Trans. Autom. Control 52(5), 863–868 (2007) MathSciNetCrossRefGoogle Scholar
  26. 26.
    Yoshikawa, T.: Manipulability of robotic mechanisms. Int. J. Robot. Res. 4(2), 3–9 (1985) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhang, S., Camlibel, K., Cao, M.: Controllability of diffusively-coupled multi-agent systems with general and distance regular coupling topologies. In: IEEE Conference on Decision and Control, Orlando, FL, Dec. 2011 (2011) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Magnus Egerstedt
    • 1
    Email author
  • Jean-Pierre de la Croix
    • 1
  • Hiroaki Kawashima
    • 2
  • Peter Kingston
    • 1
  1. 1.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Intelligence Science and Technology, Graduate School of InformaticsKyoto UniversityKyotoJapan

Personalised recommendations