Skip to main content

Hipster: Integrating Theory Exploration in a Proof Assistant

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 8543)

Abstract

This paper describes Hipster, a system integrating theory exploration with the proof assistant Isabelle/HOL. Theory exploration is a technique for automatically discovering new interesting lemmas in a given theory development. Hipster can be used in two main modes. The first is exploratory mode, used for automatically generating basic lemmas about a given set of datatypes and functions in a new theory development. The second is proof mode, used in a particular proof attempt, trying to discover the missing lemmas which would allow the current goal to be proved. Hipster’s proof mode complements and boosts existing proof automation techniques that rely on automatically selecting existing lemmas, by inventing new lemmas that need induction to be proved. We show example uses of both modes.

Keywords

  • Equivalence Class
  • Proof Obligation
  • Proof Assistant
  • Inductive Proof
  • Theory Exploration

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-08434-3_9
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-08434-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanchette, J.C.: Personal communication (2013)

    Google Scholar 

  2. Buchberger, B.: Theory exploration with Theorema. Analele Universitatii Din Timisoara, ser. Matematica-Informatica 38(2), 9–32 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Buchberger, B., Creciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa, K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema: Towards computer-aided mathematical theory exploration. Journal of Applied Logic 4(4), 470–504 (2006), Towards Computer Aided Mathematics

    Google Scholar 

  4. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of Haskell programs. In: Proceedings of ICFP, pp. 268–279 (2000)

    Google Scholar 

  5. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating inductive proofs using theory exploration. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 392–406. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  6. Claessen, K., Smallbone, N., Hughes, J.: QuickSpec: Guessing formal specifications using testing. In: Fraser, G., Gargantini, A. (eds.) TAP 2010. LNCS, vol. 6143, pp. 6–21. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  7. Dixon, L., Fleuriot, J.D.: Higher order rippling in IsaPlanner. In: Slind, K., Bunker, A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004. LNCS, vol. 3223, pp. 83–98. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  8. Haftmann, F., Bulwahn, L.: Code generation from Isabelle/HOL theories (2013), http://isabelle.in.tum.de/doc/codegen.pdf

  9. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp. 103–117. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  10. Heras, J., Komendantskaya, E., Johansson, M., Maclean, E.: Proof-pattern recognition and lemma discovery in ACL2. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19. LNCS, vol. 8312, pp. 389–406. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  11. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Design and Application of Strategies/Tactics in Higher Order Logics (STRATA), number NASA/CP-2003-212448 in NASA Technical Reports, pp. 56–68 (2003)

    Google Scholar 

  12. Ireland, A., Bundy, A.: Productive use of failure in inductive proof. Journal of Automated Reasoning 16, 79–111 (1996)

    MathSciNet  CrossRef  MATH  Google Scholar 

  13. Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive theories. Journal of Automated Reasoning 47(3), 251–289 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  14. Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: Machine learning for Sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 35–50. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  15. McCasland, R.L., Bundy, A., Smith, P.F.: Ascertaining mathematical theorems. Electronic Notes in Theoretical Computer Science 151(1), 21–38 (2006)

    CrossRef  MATH  Google Scholar 

  16. Montano-Rivas, O., McCasland, R., Dixon, L., Bundy, A.: Scheme-based theorem discovery and concept invention. Expert Systems with Applications 39(2), 1637–1646 (2012)

    CrossRef  Google Scholar 

  17. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  18. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: IWIL 2010 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Johansson, M., Rosén, D., Smallbone, N., Claessen, K. (2014). Hipster: Integrating Theory Exploration in a Proof Assistant. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds) Intelligent Computer Mathematics. CICM 2014. Lecture Notes in Computer Science(), vol 8543. Springer, Cham. https://doi.org/10.1007/978-3-319-08434-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08434-3_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08433-6

  • Online ISBN: 978-3-319-08434-3

  • eBook Packages: Computer ScienceComputer Science (R0)