Abstract
We study representation formats that allow formally defining what we call flexary operators: functions that take arbitrarily many arguments, like \(\sum_{k=1}^n a_k\) or binders that bind arbitrarily many variables, like ∀ x1,…x n . F. Concretely, we define a flexary logical framework based on LF, and use it as a meta-language to define flexary first-order logic and flexary simple type theory. We use these to formalize several flexary mathematical concepts including arithmetical and logical operators, matrices, and polynomials.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ausbrooks, R., Buswell, S., Carlisle, D., Dalmas, S., Devitt, S., Diaz, A., Froumentin, M., Hunter, R., Ion, P., Kohlhase, M., Miner, R., Poppelier, N., Smith, B., Soiffer, N., Sutor, R., Watt, S.: Mathematical Markup Language (MathML) Version 2.0, 2nd edn. (2003), http://www.w3.org/TR/MathML2
Coquand, T., Huet, G.: The Calculus of Constructions. Information and Computation 76(2/3), 95–120 (1988)
Information technology — Common Logic (CL): a framework for a family of logic-based languages. Technical Report 24707:2007, ISO/IEC (2007)
The Coq Development Team. The Coq Proof Assistant: Reference Manual. Technical report, INRIA (2014)
Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the Association for Computing Machinery 40(1), 143–184 (1993)
Horozal, F., Kohlhase, M., Rabe, F.: Extending OpenMath with Sequences. In: Asperti, A., Davenport, J., Farmer, W., Rabe, F., Urban, J. (eds.) Intelligent Computer Mathematics, Work-in-Progress Proceedings, pp. 58–72. University of Bologna (2011)
Kutsia, T., Buchberger, B.: Predicate logic with sequence variables and sequence function symbols. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS (LNAI), vol. 3119, pp. 205–219. Springer, Heidelberg (2004)
Korniłowicz, A.: Tentative experiments with ellipsis in Mizar. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 453–457. Springer, Heidelberg (2012)
Martin-Löf, P.: An Intuitionistic Theory of Types: Predicative Part. In: Proceedings of the 1973 Logic Colloquium, pp. 73–118. North-Holland (1974)
Norell, U.: The Agda WiKi (2005), http://wiki.portal.chalmers.se/agda
Paulson, L.C.: Isabelle: A Generic Theorem Prover. LNCS, vol. 828. Springer, Heidelberg (1994)
Pfenning, F.: Logical frameworks. In: Handbook of Automated Reasoning, pp. 1063–1147. Elsevier (2001)
Pfenning, F., Schürmann, C.: System description: Twelf - A meta-logical framework for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999)
Rabe, F.: The MMT API: A Generic MKM System. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 339–343. Springer, Heidelberg (2013)
Rabe, F., Kohlhase, M.: A Scalable Module System. Information and Computation 230(1), 1–54 (2013)
Sexton, A., Sorge, V.: Processing textbook-style matrices. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 111–125. Springer, Heidelberg (2006)
Wolfram Research, Inc. Mathematica 9.0 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Horozal, F., Rabe, F., Kohlhase, M. (2014). Flexary Operators for Formalized Mathematics. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds) Intelligent Computer Mathematics. CICM 2014. Lecture Notes in Computer Science(), vol 8543. Springer, Cham. https://doi.org/10.1007/978-3-319-08434-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-08434-3_23
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08433-6
Online ISBN: 978-3-319-08434-3
eBook Packages: Computer ScienceComputer Science (R0)