Visual Analysis for Type 2 Diabetes Mellitus – Based on Electronic Medical Records

  • Xi Meng
  • Ji-Jiang Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8549)


A multidimensional-scaling approach is proposed to analyze the main symptoms of T2DM. Based on 200 Type 2 diabetes patients’ electronic medical records, the terms which were used to described symptoms in the records and their co-occurring query terms were analyzed. A distanced-based similarity measure was used to calculate the proximity of terms to one and another based on their co-occurrences in the 200 medical records. After the calculation of the distance between each two keywords, a visual clustering of groups of terms was conducted. Each terms distribution within each visual configuration showed the most common symptoms of Type 2 diabetes such as Foam in Urine, Intermittent Dizziness, Hyperlipemia, Feeble, Diuresis etc; however it also showed some hidden relations behind our cognition.


T2DM visualization visual analysis co-word MDS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. J. Diabetes Care, 31(suppl. 1), 55–60 (2008)Google Scholar
  2. 2.
    Chen, L., Magliano, D.J., Zimmet, P.Z.: The worldwide epidemiology of type 2 diabetes mellitus present and future perspectives. J. Nature Reviews Endocrinology 8(4), 228–236 (2012)CrossRefGoogle Scholar
  3. 3.
    Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346(6), 393–403 (February 7, 2002)Google Scholar
  4. 4.
    Hu, F.B.: Globalization of Diabetes: The role of diet, lifestyle, and genes. Diabetes Care 34(6), 1249–1257 (2011)CrossRefGoogle Scholar
  5. 5.
  6. 6.
  7. 7.
    Wang, S.J., Middleton, B., Prosser, L.A., et al.: A cost-benefit analysis of electronic medical records in primary care. J. The American Journal of Medicine 114(5), 397–403 (2003)CrossRefGoogle Scholar
  8. 8.
    Wei, W.Q., Tao, C., Jiang, G., et al.: A high throughput semantic concept frequency based approach for patient identification: a case study using type 2 diabetes mellitus clinical notes. In: AMIA Annual Symposium Proceedings, pp. 857–861. American Medical Informatics Association (2012)Google Scholar
  9. 9.
    Cascade, E., Marr, P., Winslow, M., et al.: Conducting research on the Internet: medical record data integration with patient-reported outcomes. Journal of Medical Internet Research 14(5) (2012)Google Scholar
  10. 10.
    Karlsson, A.K., Lidell, E., Johansson, M.: Health-care professionals’ documentation of wellbeing in patients following open heart surgery: a content analysis of medical records. J. Journal of Nursing Management 21(1), 112–120 (2013)CrossRefGoogle Scholar
  11. 11.
    Adamsen, L., Tewes, M.: Discrepancy between patients’ perspectives, staff’s documentation and reflections on basic nursing care. J. Scandinavian Journal of Caring Sciences 14(2), 120–129 (2000)CrossRefGoogle Scholar
  12. 12.
    Callon, M.: Pinpointing industrial invention:An exploration of quantitative methods for the analysis of patents. In: Callon, M., Law, J., Rip, A. (eds.) Mapping the Dynamics of Science and Technology: Sociology of Science in the Real World, pp. 163–188. Macmillan Press, London (1986)Google Scholar
  13. 13.
    Cambrosio, A., Limoges, C., Courtial, J.P., Laville, F.: Historical scientometrics? Mapping over 70 years of biological safety research with co-word analysis. J. Scientometrics 27, 119–143 (1993)CrossRefGoogle Scholar
  14. 14.
    Braam, R.R., Moed, H.F., van Raan, A.F.J.: Mapping of science by combined co-citation and word analysis. II: Dynamical aspects. Journal of the American Society for Information Science 42, 252–266 (1991)CrossRefGoogle Scholar
  15. 15.
    Zhang, J., Wolfram, D., Wang, P., et al.: Visualization of health-subject analysis based on query term co-occurrences. J. Journal of the American Society for Information Science and Technology 59(12), 1933–1947 (2008)CrossRefGoogle Scholar
  16. 16.
    Klawonn, F., Lechner, W., Grigull, L.: Case-Centred multidimensional scaling for classification visualisation in medical diagnosis. In: Huang, G., Liu, X., He, J., Klawonn, F., Yao, G. (eds.) HIS 2013. LNCS, vol. 7798, pp. 137–148. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Saha, B., Pham, D.-S., Phung, D., Venkatesh, S.: Clustering patient medical records via sparse subspace Representation. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G., et al. (eds.) PAKDD 2013, Part II. LNCS (LNAI), vol. 7819, pp. 123–134. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Jensen, P.B., Jensen, L.J., Brunak, S.: Mining electronic health records: towards better research applications and clinical care. J. Nature Reviews Genetics 13(6), 395–405 (2012)CrossRefGoogle Scholar
  19. 19.
    Korfhage, R.R.: Information Storage and Retrieval. Wiley, New York (1997)Google Scholar
  20. 20.
    De Leeuw, J., Mair, P.: Multidimensional scaling using majorization: SMACOF in R.J. (2011)Google Scholar
  21. 21.
    Tolman, K.G., Fonseca, V., Dalpiaz, A., et al.: Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. J. Diabetes Care 30(3), 734–743 (2007)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Vinik, A.I., Maser, R.E., Mitchell, B.D., et al.: Diabetic autonomic neuropathy. J. Diabetes Care 26(5), 1553–1579 (2003)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Juutilainen, A., Lehto, S., Rönnemaa, T., et al.: Type 2 Diabetes as a “Coronary Heart Disease Equivalent” An 18-year prospective population-based study in Finnish subjects. J. Diabetes Care 28(12), 2901–2907 (2005)CrossRefGoogle Scholar
  26. 26.
  27. 27.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. J. Diabetes Care 31(suppl. 1), S55–S60 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Xi Meng
    • 1
  • Ji-Jiang Yang
    • 2
    • 3
  1. 1.Department of Public Security Intelligence SciencePeople’ Public Security University of ChinaBeijingChina
  2. 2.RIITTsinghua UniversityBeijingChina
  3. 3.TNListTsinghua UniversityBeijingChina

Personalised recommendations