Abstract
The main challenges for the deployment of wind turbine systems are to maximise the amount of good quality electrical power extracted from wind energy. This must be ensured over a significantly wide range of weather conditions simultaneously with minimising both manufacturing and maintenance costs. In consequence to this, the fault tolerant control (FTC) and fault detection and diagnosis (FDD) research have witnessed a steady increase in interest in this application area as an approach to maintain system sustainability with more focus on offshore wind turbines (OWTs) projects. This chapter focuses on investigations of different aspects of operation and control of wind turbine systems and the proposal of a new FTC approach to sustainable OWTs. A typical non-linear state space model of a wind turbine system is described and a Takagi-Sugeno (T-S) fuzzy model of this system is also presented. A new approach to active sensor fault tolerant tracking control (FTTC) for OWT described via T-S multiple models. The FTTC strategy is designed in such way that aims to maintaining nominal wind turbine controller without change in both fault and fault-free cases. This is achieved by inserting T-S proportional state estimators augmented with multiple-integral feedback (PMI) fault estimators to be capable to estimate different generator and rotor speed sensors fault for compensation purposes. The material in this chapter is presented using a non-linear benchmark system model of a wind turbine offered within a competition led by the companies Mathworks and KK-Electronic.
Keywords
- Wind turbine control
- Active fault tolerant control
- Fault estimation
- T-S fuzzy systems
- Tracking control
This is a preview of subscription content, access via your institution.
Buying options

















Abbreviations
- \(P_{\text{cap}} , P_{\text{wind}}\) :
-
Aerodynamic, wind power
- ρ :
-
Air density
- R :
-
Rotor radius
- \(C_{p} , C_{q}\) :
-
Power, torque coefficients
- \(\beta , \beta_{r}\) :
-
Actual, reference blade pitch angle
- \(\lambda , \lambda_{\text{opt}}\) :
-
Actual, optimal tip-speed-ratio
- \(v, v_{ \hbox{min} } , v_{ \hbox{max} }\) :
-
Point, minimum, and maximum wind speed
- \(\omega_{r} , \omega_{ \hbox{min} } , \omega_{ \hbox{max} } , \omega_{{r{\text{opt}}}}\) :
-
Actual, minimum, maximum, and optimal rotor speed
- T a :
-
Aerodynamic torque
- \(T_{g} , T_{gr} , T_{gm} ,\) :
-
Actual, reference, measured generator torque
- \(J_{r} , J_{g}\) :
-
Rotor, generator inertia
- \(B_{r} , B_{g}\) :
-
Rotor, generator external damping
- ω g :
-
Generator speed
- n g :
-
Gearbox ratio
- \(K_{{{\text{d}}t}} ,B_{{{\text{d}}t}}\) :
-
Torsion stiffness, damping coefficients
- \(\theta_{\Delta }\) :
-
Torsion angle
- ζ :
-
Damping factor
- ω n :
-
Natural frequency
- τ g :
-
Generator time constant
- \(C_{{p{ \hbox{max} }}}\) :
-
Upper bound of power coefficient
- \({\mathcal{A}}_{\text{wind}} ,\text{ }\,{\mathcal{A}}, \,{\mathcal{A}}_{2}\) :
-
Upstream, disc, downstream, areas
- \(P^{ + } ,\, P^{ - }\) :
-
Pressure before, after actuator disc
- F d :
-
Thrust exerted on the actuator disc
- α :
-
Axial interference factor
- t b ,t w :
-
Blade, turbulence times
- S :
-
Length of the disturbed wind
- n :
-
Number of blades
- f s :
-
Sensor fault signal
- \(e_{t} , \,e_{x} ,\, e_{v}\) :
-
Tracking, state estimation, wind measurement errors
- \(K\left( p \right), \,L_{a} \left( p \right)\) :
-
Controller, observer gains
- \(P_{1} ,\,P_{2} ,\,\gamma , \,\mu , \,X_{1}\) :
-
LMI variables
- \(A\left( p \right),\,B,\, E\left( p \right), \,C, \,D_{f}\) :
-
System matrices
- \(\bar{A}\left( p \right),\, \bar{B}, \,\bar{E}\left( p \right), \,R, \bar{C},\, \bar{D}_{f}\) :
-
System matrices augmented with tracking error integral
- \(A_{a} \left( p \right), \,B_{a} , \,E_{a} \left( p \right), \,R_{a} , \,G, \,C_{a}\) :
-
Observer augmented matrices
References
Ahmed-Zaid F, Ioannou P, Gousman K, Rooney R (1991) Accommodation of failures in the F-16 aircraft using adaptive control. IEEE Control Syst 11(1):73–78
Alwi H, Edwards C (2008) Fault tolerant control using sliding modes with on-line control allocation. Automatica 44(7):1859–1866
Amirat Y, Benbouzid MEH, Al-Ahmar E, Bensaker B, Turri S (2009) A brief status on condition monitoring and fault diagnosis in wind energy conversion systems. Renew Sustain Energy Rev 13(9):2629–2636
Benosman M, Lum KY (2010) Passive actuators’ fault-tolerant control for affine nonlinear systems. IEEE Trans Control Syst Technol 18(1):152–163
Bianchi DF, De Battista H, Mantz JR (2007) Wind turbine control systems: principles. Springer, Modelling and Gain Scheduling Design
Blanke M, Kinnaert M, Lunze J, Staroswiecki M (2006) Diagnosis and fault-tolerant control. Springer, London
Boskovic JD, Mehra RK (1999) Stable multiple model adaptive flight control for accommodation of a large class of control effector failures. In: Proceedings of the American control conference, San Diego, California, 2–4 June 1920–1924
Boskovic, JD, Mehra RK (2002) An adaptive retrofit reconfigurable flight controller. In: Proceedings of the 41st IEEE conference on decision and control, Las Vegas, Nevada, 1257–1262. 10–13 Dec 2002
Bossanyi EA, Ramtharan G, Savini B (2009) The importance of control in wind turbine design and loading. In: 17th Mediterranean conference on control and automation, Thessaloniki, Greece, 1269–1274. 24–26 June 2009
Burton T, Sharpe D, Jenkins N, Bossanyi E (2001) Wind energy handbook. Wiley, Chichester
Carriveau R (2011) Fundamental and advanced topics in wind power. Intech, Rijeka
Caselitz P, Giebhardt J (2005) Rotor condition monitoring for improved operational safety of offshore wind energy converters. J Solar Energy Eng 127(2):253–261
Ding SX (2008) Model-based fault diagnosis techniques design schemes, algorithms, and tools. Springer, Berlin
Djurovic S, Crabtree CJ, Tavner PJ, Smith AC (2012) Condition monitoring of wind turbine induction generators with rotor electrical asymmetry. Renew Power Generation, IET 6(4):207–216
Gao Z, Ding SX (2007) Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems. Automatica 43(5):912–920
Gao Z, Ding SX, Ma Y (2007) Robust fault estimation approach and its application in vehicle lateral dynamic systems. Optim Control Appl Methods 28(3):143–156
Guang-Hong Y, Dan Y (2010) Reliable H∞ control of linear systems with adaptive mechanism. IEEE Trans Automatic Control 55(1):242–247
Guerra TM, Kruszewski A, Vermeiren L, Tirmant H (2006) Conditions of output stabilization for nonlinear models in the Takagi-Sugeno’s form. Fuzzy Sets Syst 157(9):1248–1259
Jiang B, Staroswiecki M, Cocquempot V (2006) Fault accommodation for nonlinear dynamic systems. IEEE Trans Autom Control 51(9):1578–1583
Johnson KE, Fleming PA (2011) Development, implementation, and testing of fault detection strategies on the National Wind Technology Center’s controls advanced research turbines. Mechatronics 21(4):728–736
Kamal E, Aitouche A, Ghorbani R, Bayart M (2012) Robust fuzzy fault-tolerant control of wind energy conversion systems subject to sensor faults. IEEE Trans Sustainable Energy 3(2):231–241
Li JL, Yang GH (2012) Adaptive actuator failure accommodation for linear systems with parameter uncertainties. IET Control Theory Appl 6(2):274–285
Lunze J, Steffen T (2006) Control reconfiguration after actuator failures using disturbance decoupling methods. IEEE Trans Autom Control 51(10):1590–1601
Mansouri B, Manamanni N, Guelton K, Djemai M (2008) Robust pole placement controller design in LMI region for uncertain and disturbed switched systems. Nonlinear Anal Hybrid Syst 2(4):1136–1143
Maybeck PS, Stevens RD (1991) Reconfigurable flight control via multiple model adaptive control methods. IEEE Trans Aerosp Electron Syst 27(3):470–480
Munteanu I, Bratcu A, Cutululis N-A, Ceanga E (2008) Optimal control of wind energy systems: towards a global approach. Springer, London
Niemann H, Stoustrup J (2005) Passive fault tolerant control of a double inverted pendulum—a case study. Control Eng Pract 13(8):1047–1059
Noura H, Sauter D, Hamelin F, Theilliol D (2000) Fault-tolerant control in dynamic systems: application to a winding machine. IEEE Control Syst 20(1):33–49
Odgaard PF, Stoustrup J, Kinnaert M (2009) Fault tolerant control of wind turbines: A Benchmark model. In: 7th IFAC symposium on fault detection, supervision and safety of technical processes Safeprocess 2009, Barcelona, 155–160. 30 June–3 July 2009
Odgaard PF, Stoustrup J, Kinnaert M (2013) Fault-tolerant control of wind turbines: a Benchmark model. IEEE Trans Control Syst Technol 21(4):1168–1182
Patton R, Putra D, Klinkhieo S (2010) Friction compensation as a fault-tolerant control problem. Int J Syst Sci 41(8):987–1001
Patton RJ (1997) Fault tolerant control: the 1997 situation. IFAC Safeprocess ‘97, Hull, United Kingdom, pp 1033–1055
Patton RJ, Frank PM, Clark RN (1989) Fault diagnosis in dynamic systems: theory and application. Prentice Hall, New York
Puig V, Quevedo J (2001) Fault-tolerant PID controllers using a passive robust fault diagnosis approach. Control Eng Pract 9(11):1221–1234
Ribrant J, Bertling LM (2007) Survey of failures in wind power systems with focus on Swedish wind power plants during 1997–2005. IEEE Trans Energy Convers 22(1):167–173
Richter JH (2011) Reconfigurable control of nonlinear dynamical systems a fault-hiding approach. Springer, Berlin
Richter JH, Schlage T, Lunze J (2007) Control reconfiguration of a thermofluid process by means of a virtual actuator. IET Control Theory Appl 1(6):1606–1620
Sami M, Patton RJ (2012a) An FTC approach to wind turbine power maximisation via T-S fuzzy modelling and control. In: 8th IFAC symposium on fault detection, supervision and safety of technical processes, Mexico City, Mexico, pp 349–354. 29–31 Aug 2012
Sami M, Patton RJ (2012b) Wind turbine sensor fault tolerant control via a multiple-model approach. In: The 2012 UKACC international conference on control, Cardiff, 3–5 Sept 2012
Sanchez-Parra M, Suarez DA, Verde C (2011) Fault tolerant control for gas turbines. In: 16th International conference on intelligent system application to power systems, pp 1–6. 25–28 Sept 2012
Šiljak DD (1980) Reliable control using multiple control systems. Int J Control 31(2):303–329
Sloth C, Esbensen T, Stoustrup J (2011) Robust and fault-tolerant linear parameter-varying control of wind turbines. Mechatronics 21(4):645–659
Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15(1):116–132
Tanaka K, Wang HO (2001) Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York
Tao G, Chen S, Tang X, Joshi SM (2004) Adaptive control of systems with actuator failures. Int J Robust Nonlinear Control
Van Bussel GJW, Zaaijer MB (2001) Reliability, availability and maintenance aspects of large-scale offshore wind farms, a concepts study. In: Marine renewable energies conference, Newcastle, pp 119–126. 27–28 Dec 2001
Veillette RJ (1995) Reliable linear-quadratic state-feedback control. Automatica 31(1):137–143
Veillette RJ, Medanic JB, Perkins WR (1992) Design of reliable control systems. IEEE Trans Autom Control 37(3):290–304
Verbruggen TW (2003) Wind turbine operation and maintenance based on condition monitoring. Energy Research Center of the Netherlands, Technical report ECN-C-03-047
Weng Z, Patton RJ, Cui P (2007) Active fault-tolerant control of a double inverted pendulum. J Syst Control Eng 221(6):221, 895
Yang G-H, Ye D (2011) Reliable control and filtering of linear systems with adaptive mechanisms. Taylor and Francis, London
Yen GG, Liang-Wei H (2003) Online multiple-model-based fault diagnosis and accommodation. IEEE Trans Ind Electron 50(2):296–312
Yew-Wen L, Der-Cheng L, Ti-Chung L (2000) Reliable control of nonlinear systems. IEEE Trans Autom Control 45(4):706–710
Zhang K, Jiang B, Staroswiecki M (2010) Dynamic output feedback-fault tolerant controller design for Takagi-Sugeno fuzzy systems with actuator faults. IEEE Trans Fuzzy Syst 18(1):194–201
Zhang Y, Jiang J (2001) Integrated active fault-tolerant control using IMM approach. IEEE Trans Aerosp Electron Syst 37(4):1221–1235
Zhang Y, Jiang J (2008) Bibliographical review on reconfigurable fault-tolerant control systems. Annu Rev Control 32(2):229–252
Zhang YM, Jiang J (2002) Active fault-tolerant control system against partial actuator failures. IEE Proc Control Theory Appl 149(1):95–104
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Shaker, M.S., Patton, R.J. (2014). A Fault Tolerant Control Approach to Sustainable Offshore Wind Turbines. In: Luo, N., Vidal, Y., Acho, L. (eds) Wind Turbine Control and Monitoring. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-08413-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-08413-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08412-1
Online ISBN: 978-3-319-08413-8
eBook Packages: EnergyEnergy (R0)