Skip to main content

Methods for the Efficient Discovery of Large Item-Indexable Sequential Patterns

  • Conference paper
  • First Online:
New Frontiers in Mining Complex Patterns (NFMCP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8399))

Included in the following conference series:


An increasingly relevant set of tasks, such as the discovery of biclusters with order-preserving properties, can be mapped as a sequential pattern mining problem on data with item-indexable properties. An item-indexable database, typically observed in biomedical domains, does not allow item repetitions per sequence and is commonly dense. Although multiple methods have been proposed for the efficient discovery of sequential patterns, their performance rapidly degrades over item-indexable databases. The target tasks for these databases benefit from lengthy patterns and tolerate local mismatches. However, existing methods that consider noise relaxations to increase the average short length of sequential patterns scale poorly, aggravating the yet critical efficiency. In this work, we first propose a new sequential pattern mining method, IndexSpan, which is able to mine sequential patterns over item-indexable databases with heightened efficiency. Second, we propose a pattern-merging procedure, MergeIndexBic, to efficiently discover lengthy noise-tolerant sequential patterns. The superior performance of IndexSpan and MergeIndexBic against competitive alternatives is demonstrated on both synthetic and real datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. 1.

    Detailed description of tasks available in

  2. 2.

    Software and datasets available in:

  3. 3.

    Implementation from SPMF:

  4. 4.

    Implementation from SPMF:

  5. 5.


  1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE. pp. 3–14. IEEE CS, Washington (1995)

    Google Scholar 

  2. Antunes, C., Oliveira, A.L.: Mining patterns using relaxations of user defined constraints. In: Knowledge Discovery in Inductive Databases (2004)

    Google Scholar 

  3. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a bitmap representation. In: KDD. pp. 429–435. ACM, New York (2002)

    Google Scholar 

  4. Bayardo, R.J.: Efficiently mining long patterns from databases. SIGMOD Rec. 27(2), 85–93 (1998)

    Article  Google Scholar 

  5. Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression data: the order-preserving submatrix problem. In: RECOMB. pp. 49–57. ACM, New York (2002)

    Google Scholar 

  6. Cheng, H., Yu, P.S., Han, J.: Approximate frequent itemset mining in the presence of random noise. In: Maimon, O., Rokach, L. (eds.) Soft Computing for Knowledge Discovery and Data Mining, pp. 363–389. Springer, New York (2008)

    Chapter  Google Scholar 

  7. Chiu, D.Y., Wu, Y.H., Chen, A.L.P.: An efficient algorithm for mining frequent sequences by a new strategy without support counting. In: ICDE. p. 375. IEEE CS, Washington (2004)

    Google Scholar 

  8. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and future directions. Data Min. Knowl. Discov. 15(1), 55–86 (2007)

    Article  MathSciNet  Google Scholar 

  9. Han, J., Yang, Q., Kim, E.: Plan mining by divide-and-conquer. In: ACM SIGMOD IW on Research Issues in DMKD (1999)

    Google Scholar 

  10. Henriques, R., Madeira, S., Antunes, C.: Indexspan: efficient discovery of item-indexable sequential patterns. In: ECML/PKDD IW on New Frontiers in Mining Complex Patterns (2013)

    Google Scholar 

  11. Kumar, P., Krishna, P., Raju, S.: Pattern Discovery Using Sequence Data Mining: Applications and Studies. IGI Global, Hershey (2011)

    Book  Google Scholar 

  12. Lin, D.-I., Kedem, Z.M.: Pincer search: a new algorithm for discovering the maximum frequent set. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 105–119. Springer, Heidelberg (1998)

    Google Scholar 

  13. Liu, J., Wang, W.: Op-cluster: clustering by tendency in high dimensional space. In: ICDM. p. 187. IEEE CS, Washington (2003)

    Google Scholar 

  14. Liu, J., Yang, J., Wang, W.: Biclustering in gene expression data by tendency. In: IEEE Computational Systems Bioinformatics Conference, pp. 182–193. IEEE (2004)

    Google Scholar 

  15. Mabroukeh, N.R., Ezeife, C.I.: A taxonomy of sequential pattern mining algorithms. ACM Comput. Surv. 43(1), 3:1–3:41 (2010)

    Article  Google Scholar 

  16. Martin, D., Brun, C., Remy, E., Mouren, P., Thieffry, D., Jacq, B.: Gotoolbox: functional analysis of gene datasets based on gene ontology. Genome Biol. 5(12), 101 (2004)

    Article  Google Scholar 

  17. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.: Mining sequential patterns by pattern-growth: the prefixspan approach. IEEE Trans. Knowl. Data Eng. 16(11), 1424–1440 (2004)

    Article  Google Scholar 

  18. Pei, J., Han, J., Mortazavi-Asl, B., Zhu, H.: Mining access patterns efficiently from web logs. In: Terano, T., Liu, H., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805, pp. 396–407. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Raedt, L.D., Guns, T., Nijssen, S.: Constraint programming for data mining and machine learning. In: AAAI. AAAI Press (2010)

    Google Scholar 

  20. Salvemini, E., Fumarola, F., Malerba, D., Han, J.: FAST sequence mining based on sparse Id-lists. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS, vol. 6804, pp. 316–325. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Serin, A., Vingron, M.: Debi: discovering differentially expressed biclusters using a frequent itemset approach. Algorithms Mol. Biol. 6, 1–12 (2011)

    Article  Google Scholar 

  22. Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and performance improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)

    Google Scholar 

  23. qing Wei, Y., Liu, D., shan Duan, L.: Distributed prefixspan algorithm based on mapreduce. In: Information Technology in Medicine and Education, vol. 2, pp. 901–904 (2012)

    Google Scholar 

  24. Yan, X., Han, J., Afshar, R.: CloSpan: mining closed sequential patterns in large datasets. In: SDM. pp. 166–177 (2003)

    Google Scholar 

  25. Yang, J., Wang, W., Yu, P.S., Han, J.: Mining long sequential patterns in a noisy environment. In: SIGMOD. pp. 406–417. ACM, New York (2002)

    Google Scholar 

  26. Yang, Z., Wang, Y., Kitsuregawa, M.: LAPIN: effective sequential pattern mining algorithms by last position induction for dense databases. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 1020–1023. Springer, Heidelberg (2007)

    Google Scholar 

  27. Zaki, M.J.: Spade: an efficient algorithm for mining frequent sequences. Mach. Learn. 42(1–2), 31–60 (2001)

    Article  MATH  Google Scholar 

  28. Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel sequences from gps trajectories. In: WWW. pp. 791–800. ACM (2009)

    Google Scholar 

  29. Zhu, F., Yan, X., Han, J., Yu, P.S.: Mining Frequent Approximate Sequential Patterns. Chapman & Hall, London (2009)

    Google Scholar 

  30. Zhu, F., Yan, X., Han, J., Yu, P., Cheng, H.: Mining colossal frequent patterns by core pattern fusion. In: ICDE. pp. 706–715 (2007)

    Google Scholar 

Download references


This is an extension of previous work [10] supported by Fundação para a Ciência e Tecnologia under the project D2PM (PTDC/EIA-EIA/110074/2009), project Neuroclinomics (PTDC/EIA-EIA/ 111239/2009), and PhD grant SFRH/BD/75924/2011.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Rui Henriques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Henriques, R., Antunes, C., Madeira, S.C. (2014). Methods for the Efficient Discovery of Large Item-Indexable Sequential Patterns. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z. (eds) New Frontiers in Mining Complex Patterns. NFMCP 2013. Lecture Notes in Computer Science(), vol 8399. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08406-0

  • Online ISBN: 978-3-319-08407-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics