Skip to main content

Online Makespan Minimization with Parallel Schedules

  • Conference paper
Algorithm Theory – SWAT 2014 (SWAT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8503))

Included in the following conference series:

  • 1156 Accesses

Abstract

Online makespan minimization is a classical problem in which a sequence of jobs σ = J 1, …, J n has to be scheduled on m identical parallel machines so as to minimize the maximum completion time of any job. In this paper we investigate the problem in a model where extra power/resources are granted to an algorithm. More specifically, an online algorithm is allowed to build several schedules in parallel while processing σ. At the end of the scheduling process the best schedule is selected. This model can be viewed as providing an online algorithm with extra space, which is invested to maintain multiple solutions.

As a main result we develop a (4/3+ε)-competitive algorithm, for any 0 < ε ≤ 1, that uses a constant number of schedules. The constant is equal to 1/ε O(log(1/ε)). We also give a (1 + ε)-competitive algorithm, for any 0 < ε ≤ 1, that builds a polynomial number of (m/ε)O(log(1/ε) / ε) schedules. This value depends on m but is independent of the input σ. The performance guarantees are nearly best possible. We show that any algorithm that achieves a competitiveness smaller than 4/3 must construct Ω(m) schedules. On the technical level, our algorithms make use of novel guessing schemes that (1) predict the optimum makespan of σ to within a factor of 1 + ε and (2) guess the job processing times and their frequencies in σ. In (2) we have to sparsify the universe of all guesses so as to reduce the number of schedules to a constant.

Work supported by the German Research Foundation, grant AL 464/7-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albers, S.: Better bounds for online scheduling. SIAM J. Comput. 29, 459–473 (1999)

    Article  MathSciNet  Google Scholar 

  2. Albers, S., Hellwig, M.: On the value of job migration in online makespan minimization. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 84–95. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Angelelli, E., Nagy, A.B., Speranza, M.G., Tuza, Z.: The on-line multiprocessor scheduling problem with known sum of the tasks. J. Scheduling 7, 421–428 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Angelelli, E., Speranza, M.G., Tuza, Z.: Semi-on-line scheduling on two parallel processors with an upper bound on the items. Algorithmica 37, 243–262 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Angelelli, E., Speranza, M.G., Tuza, Z.: New bounds and algorithms for on-line scheduling: two identical processors, known sum and upper bound on the tasks. Discrete Mathematics & Theoretical Computer Science 8, 1–16 (2006)

    MATH  MathSciNet  Google Scholar 

  6. Azar, Y.: On-line load balancing. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms 1996. LNCS, vol. 1442, pp. 178–195. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Azar, Y., Regev, O.: On-line bin-stretching. Theor. Comput. Sci. 268, 17–41 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Azar, Y., Epstein, L., van Stee, R.: Resource augmentation in load balancing. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 189–199. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Bartal, Y., Karloff, H., Rabani, Y.: A better lower bound for on-line scheduling. Infomation Processing Letters 50, 113–116 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bartal, Y., Fiat, A., Karloff, H., Vohra, R.: New algorithms for an ancient scheduling problem. Journal of Computer and System Sciences 51, 359–366 (1995)

    Article  MathSciNet  Google Scholar 

  11. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complexity of the k-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)

    Google Scholar 

  12. Cheng, T.C.E., Kellerer, H., Kotov, V.: Semi-on-line multiprocessor scheduling with given total processing time. Theor. Comput. Sci. 337, 134–146 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. Theor. Comput. Sci. 2412(24), 2642–2656 (2011)

    Article  Google Scholar 

  14. Englert, M., Özmen, D., Westermann, M.: The power of reordering for online minimum makespan scheduling. In: Proc. 49th IEEE FOCS, pp. 603–612 (2008)

    Google Scholar 

  15. Faigle, U., Kern, W., Turan, G.: On the performance of on-line algorithms for partition problems. Acta Cybernetica 9, 107–119 (1989)

    MATH  MathSciNet  Google Scholar 

  16. Fleischer, R., Wahl, M.: Online scheduling revisited. J. Scheduling 3, 343–353 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Galambos, G., Woeginger, G.: An on-line scheduling heuristic with better worst case ratio than Graham’s list scheduling. SIAM J. Comput. 22, 349–355 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Graham, R.L.: Bounds for certain multi-processing anomalies. Bell System Technical Journal 45, 1563–1581 (1966)

    Article  Google Scholar 

  19. Gormley, T., Reingold, N., Torng, E., Westbrook, J.: Generating adversaries for request-answer games. In: Proc. 11th ACM-SIAM SODA, pp. 564–565 (2000)

    Google Scholar 

  20. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: Theoretical and practical results. J. ACM 34, 144–162 (1987)

    Article  MathSciNet  Google Scholar 

  21. Karger, D.R., Phillips, S.J., Torng, E.: A better algorithm for an ancient scheduling problem. Journal of Algorithms 20, 400–430 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kellerer, H., Kotov, V., Speranza, M.G., Tuza, Z.: Semi on-line algorithms for the partition problem. Operations Research Letters 21, 235–242 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Raghavan, P., Snir, M.: Memory versus randomization in on-line algorithms. IBM Journal of Research and Development 38, 683–708 (1994)

    Article  Google Scholar 

  24. Renault, M.P., Rosén, A., van Stee, R.: Online Algorithms with advice for bin packing and scheduling problems. CoRR abs/1311.7589 (2013)

    Google Scholar 

  25. Rudin III., J.F.: Improved bounds for the on-line scheduling problem. Ph.D. Thesis (2001)

    Google Scholar 

  26. Rudin III., J.F., Chandrasekaran, R.: Improved bounds for the online scheduling problem. SIAM J. Comput. 32, 717–735 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migration. Mathematics of Operations Reseach 34(2), 481–498 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communications of the ACM 28, 202–208 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Albers, S., Hellwig, M. (2014). Online Makespan Minimization with Parallel Schedules. In: Ravi, R., Gørtz, I.L. (eds) Algorithm Theory – SWAT 2014. SWAT 2014. Lecture Notes in Computer Science, vol 8503. Springer, Cham. https://doi.org/10.1007/978-3-319-08404-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08404-6_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08403-9

  • Online ISBN: 978-3-319-08404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics