Extending Partial Representations of Proper and Unit Interval Graphs

  • Pavel Klavík
  • Jan Kratochvíl
  • Yota Otachi
  • Ignaz Rutter
  • Toshiki Saitoh
  • Maria Saumell
  • Tomáš Vyskočil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8503)

Abstract

The recently introduced problem of extending partial interval representations asks, for an interval graph with some intervals pre-drawn by the input, whether the partial representation can be extended to a representation of the entire graph. In this paper, we give a linear-time algorithm for extending proper interval representations and an almost quadratic-time algorithm for extending unit interval representations.

We also introduce the more general problem of bounded representations of unit interval graphs, where the input constrains the positions of intervals by lower and upper bounds. We show that this problem is Open image in new window-complete for disconnected input graphs and give a polynomial-time algorithm for a special class of instances, where the ordering of the connected components of the input graph along the real line is fixed. This includes the case of partial representation extension.

The hardness result sharply contrasts the recent polynomial-time algorithm for bounded representations of proper interval graphs [Balko et al. ISAAC’13]. So unless Open image in new window, proper and unit interval representations have very different structure. This explains why partial representation extension problems for these different types of representations require substantially different techniques.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. In: SODA 2010: Proc. 21st Annu. ACM-SIAM Sympos. Discr. Alg., pp. 202–221 (2010)Google Scholar
  2. 2.
    Balko, M., Klavík, P., Otachi, Y.: Bounded representations of interval and proper interval graphs. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 535–546. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. In: SODA 2013: Proc. 24th Annu. ACM-SIAM Sympos. Discr. Alg., pp. 1030–1043 (2013)Google Scholar
  4. 4.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and planarity using PQ-tree algorithms. J. Comput. System Sci. 13, 335–379 (1976)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Chaplick, S., Dorbec, P., Kratochvíl, J., Montassier, M., Stacho, J.: Contact representations of planar graph: Rebuilding is hard. In: WG 2014 (to appear, 2014)Google Scholar
  6. 6.
    Chaplick, S., Fulek, R., Klavík, P.: Extending partial representations of circle graphs. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 131–142. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press (2009)Google Scholar
  8. 8.
    Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: Simple linear time recognition of unit interval graphs. Inform. Process. Lett. 55(2), 99–104 (1995)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of interval graphs. SIAM J. Discrete Math. 23(4), 1905–1953 (2009)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM J. Comput. 25(2), 390–403 (1996)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Fürer, M.: Faster integer multiplication. SIAM J. Comput. 39(3), 979–1005 (2009)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval graphs. Can. J. Math. 16, 539–548 (1964)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Hajós, G.: Über eine Art von Graphen. Internationale Mathematische Nachrichten 11, 65 (1957)Google Scholar
  14. 14.
    Jampani, K., Lubiw, A.: The simultaneous representation problem for chordal, comparability and permutation graphs. J. Graph Algorithms Appl. 16(2), 283–315 (2012)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Klavík, P., Kratochvíl, J., Krawczyk, T., Walczak, B.: Extending partial representations of function graphs and permutation graphs. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 671–682. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T.: Extending partial representations of subclasses of chordal graphs. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 444–454. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T., Vyskočil, T.: Linear-time algorithm for partial representation extension of interval graphs (2012) (in preparation)Google Scholar
  18. 18.
    Klavík, P., Kratochvíl, J., Vyskočil, T.: Extending partial representations of interval graphs. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 276–285. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Patrignani, M.: On extending a partial straight-line drawing. Int. J. Found. Comput. Sci. 17(5), 1061–1070 (2006)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Roberts, F.S.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph Theory, pp. 139–146. Academic Press (1969)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pavel Klavík
    • 1
  • Jan Kratochvíl
    • 2
  • Yota Otachi
    • 3
  • Ignaz Rutter
    • 4
    • 2
  • Toshiki Saitoh
    • 5
  • Maria Saumell
    • 6
  • Tomáš Vyskočil
    • 2
  1. 1.Computer Science Institute, Faculty of Mathematics and PhysicsCharles University in PragueCzech Republic
  2. 2.Department of Applied Mathematics, Faculty of Mathematics and PhysicsCharles University in PragueCzech Republic
  3. 3.School of Information ScienceJapan Advanced Institute of Science and TechnologyJapan
  4. 4.Institute of Theoretical Informatics, Faculty of InformaticsKarlsruhe Institute of Technology (KIT)Germany
  5. 5.Graduate School of EngineeringKobe UniversityKobeJapan
  6. 6.Department of MathematicsUniversity of West BohemiaPlzeňCzech Republic

Personalised recommendations