Abstract
In colored range searching, we are given a set of n colored points in d ≥ 2 dimensions to store, and want to support orthogonal range queries taking colors into account. In the colored range counting problem, a query must report the number of distinct colors found in the query range, while an answer to the colored range reporting problem must report the distinct colors in the query range.
We give the first linear space data structure for both problems in two dimensions (d = 2) with o(n) worst case query time. We also give the first data structure obtaining almost-linear space usage and o(n) worst case query time for points in d > 2 dimensions. Finally, we present the first dynamic solution to both counting and reporting with o(n) query time for d ≥ 2 and d ≥ 3 dimensions, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, P.K., Govindarajan, S., Muthukrishnan, S.M.: Range searching in categorical data: Colored range searching on grid. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 17–28. Springer, Heidelberg (2002)
Andersson, A.: General balanced trees. J. Algorithms 30(1), 1–18 (1999)
de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. (2008)
Bozanis, P., Kitsios, N., Makris, C., Tsakalidis, A.K.: New upper bounds for generalized intersection searching problems. In: Fülöp, Z. (ed.) ICALP 1995. LNCS, vol. 944, pp. 464–474. Springer, Heidelberg (1995)
van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient priority queue. Theory Comput. Syst. 10(1), 99–127 (1976)
Gagie, T., Kärkkäinen, J., Navarro, G., Puglisi, S.J.: Colored range queries and document retrieval. TCS (2012)
Gupta, P., Janardan, R., Smid, M.: Further Results on Generalized Intersection Searching Problems: Counting, Reporting, and Dynamization. J. Algorithms 19(2), 282–317 (1995)
Gupta, P., Janardan, R., Smid, M.: A technique for adding range restrictions to generalized searching problems. Inform. Process. Lett. 64(5), 263–269 (1997)
JáJá, J., Mortensen, C.W., Shi, Q.: Space-efficient and fast algorithms for multidimensional dominance reporting and counting. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)
Janardan, R., Lopez, M.: Generalized intersection searching problems. IJCGA 3(01), 39–69 (1993)
Kaplan, H., Rubin, N., Sharir, M., Verbin, E.: Counting colors in boxes. In: Proc. 18th SODA. pp. 785–794 (2007)
van Kreveld, M.: New results on data structures in computational geometry. PhD thesis, Department of Computer Science, University of Utrecht, Netherlands (1992)
Larsen, K.G., Pagh, R.: I/O-efficient data structures for colored range and prefix reporting. In: Proc. 23rd SODA. pp. 583–592 (2012)
Larsen, K.G., van Walderveen, F.: Near-Optimal Range Reporting Structures for Categorical Data. In: Proc. 24th SODA. pp. 265–276 (2013)
Mehlhorn, K., Näher, S.: Bounded ordered dictionaries in O(loglogN) time and O(n) space. Inform. Process. Lett. 35(4), 183–189 (1990)
Mortensen, C.W.: Generalized static orthogonal range searching in less space. Tech. rep., TR-2003-22, The IT University of Copenhagen (2003)
Nekrich, Y.: Orthogonal Range Searching in Linear and Almost-linear Space. Comput. Geom. Theory Appl. 42(4), 342–351 (2009)
Nekrich, Y.: Space-efficient range reporting for categorical data. In: Proc. 31st PODS. pp. 113–120 (2012)
Nekrich, Y.: Efficient range searching for categorical and plain data. ACM TODS 39(1), 9 (2014)
Nekrich, Y., Vitter, J.S.: Optimal color range reporting in one dimension. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 743–754. Springer, Heidelberg (2013)
Overmars, M.H.: Design of Dynamic Data Structures (1987)
Patrascu, M.: Lower bounds for 2-dimensional range counting. In: Proc. 39th STOC, pp. 40–46 (2007)
Shi, Q., JáJá, J.: Optimal and near-optimal algorithms for generalized intersection reporting on pointer machines. Inform. Process. Lett. 95(3), 382–388 (2005)
Willard, D.: Log-logarithmic worst-case range queries are possible in space Θ(N). Inform. Process. Lett. 17(2), 81–84 (1983)
Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: Proc. 44th STOC. pp. 887–898 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Grossi, R., Vind, S. (2014). Colored Range Searching in Linear Space. In: Ravi, R., Gørtz, I.L. (eds) Algorithm Theory – SWAT 2014. SWAT 2014. Lecture Notes in Computer Science, vol 8503. Springer, Cham. https://doi.org/10.1007/978-3-319-08404-6_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-08404-6_20
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08403-9
Online ISBN: 978-3-319-08404-6
eBook Packages: Computer ScienceComputer Science (R0)