Win-Win Kernelization for Degree Sequence Completion Problems

  • Vincent Froese
  • André Nichterlein
  • Rolf Niedermeier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8503)


We study the kernelizability of a class of NP-hard graph modification problems based on vertex degree properties. Our main positive results refer to NP-hard graph completion (that is, edge addition) cases while we show that there is no hope to achieve analogous results for the corresponding vertex or edge deletion versions. Our algorithms are based on a method that transforms graph completion problems into efficiently solvable number problems and exploits f-factor computations for translating the results back into the graph setting. Indeed, our core observation is that we encounter a win-win situation in the sense that either the number of edge additions is small (and thus faster to find) or the problem is polynomial-time solvable. This approach helps in answering an open question by Mathieson and Szeider [JCSS 2012].


Planar Graph Vertex Cover Polynomial Kernel Degree Sequence Reduction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) kernelization. In: Proc. 50th FOCS, pp. 629–638. IEEE (2009)Google Scholar
  3. 3.
    Borri, A., Calamoneri, T., Petreschi, R.: Recognition of unigraphs through superposition of graphs. J. Graph Algorithms Appl. 15(3), 323–343 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: SIAM Monographs on Discrete Mathematics and Applications, vol. 3. SIAM (1999)Google Scholar
  5. 5.
    Chartrand, G., Lesniak, L., Mynhardt, C.M., Oellermann, O.R.: Degree uniform graphs. Ann. N. Y. Acad. Sci. 555(1), 122–132 (1989)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Chester, S., Kapron, B., Srivastava, G., Venkatesh, S.: Complexity of social network anonymization. Social Netw. Analys. Mining 3(2), 151–166 (2013)CrossRefGoogle Scholar
  7. 7.
    Cornuéjols, G.: General factors of graphs. J. Combin. Theory Ser. B 45(2), 185–198 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer (2013)Google Scholar
  9. 9.
    Eppstein, D., Spiro, E.S.: The h-index of a graph and its application to dynamic subgraph statistics. J. Graph Algorithms Appl. 16(2), 543–567 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Fellows, M.R., Guo, J., Moser, H., Niedermeier, R.: A generalization of Nemhauser and Trotter’s local optimization theorem. J. Comput. System Sci. 77(6), 1141–1158 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman (1979)Google Scholar
  13. 13.
    Golovach, P.A.: Editing to a connected graph of given degrees. CoRR, abs/1308.1802 (2013)Google Scholar
  14. 14.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  15. 15.
    Hartung, S., Nichterlein, A., Niedermeier, R., Suchý, O.: A refined complexity analysis of degree anonymization on graphs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 594–606. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Hartung, S., Hoffman, C., Nichterlein, A.: Improved upper and lower bound heuristics for degree anonymization in social networks. CoRR, abs/1402.6239 (2014)Google Scholar
  17. 17.
    Katerinis, P., Tsikopoulos, N.: Minimum degree and f-factors in graphs. New Zealand J. Math. 29(1), 33–40 (2000)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Komusiewicz, C., Niedermeier, R.: New races in parameterized algorithmics. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 19–30. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: ACM SIGMOD Conference, SIGMOD 2008, pp. 93–106. ACM (2008)Google Scholar
  20. 20.
    Lokshtanov, D., Misra, N., Saurabh, S.: Kernelization - preprocessing with a guarantee. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp. 129–161. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Lovász, L., Plummer, M.D.: Matching Theory. Annals of Discrete Mathematics, vol. 29. North-Holland (1986)Google Scholar
  22. 22.
    Mathieson, L., Szeider, S.: Editing graphs to satisfy degree constraints: A parameterized approach. J. Comput. System Sci. 78(1), 179–191 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced subgraphs. J. Discrete Algorithms 7(2), 181–190 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Vincent Froese
    • 1
  • André Nichterlein
    • 1
  • Rolf Niedermeier
    • 1
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinGermany

Personalised recommendations