Motion Estimation

  • Fabian Gigengack
  • Xiaoyi Jiang
  • Mohammad Dawood
  • Klaus P. Schäfers
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


In the introduction of this book we have seen that PET image acquisition is susceptible to motion artifacts. The first step to overcome this problem is the separation of the measured data into different motion states via gating as described in Sect. 1.3. The next step is the estimation of motion between these gated reconstructions. This step is crucial as its accuracy highly influences the quality of the final motion corrected image.


Attenuation Correction Optical Flow Motion Estimation Image Registration Transformation Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Armijo, Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math. 16(1), 1–3 (1966)MathSciNetzbMATHGoogle Scholar
  2. 2.
    V. Arsigny, O. Commowick, N. Ayache, X. Pennec, A fast and Log-Euclidean polyaffine framework for locally linear registration. J. Math. Imaging Vis. 33(2), 222–238 (2009)MathSciNetGoogle Scholar
  3. 3.
    V. Arsigny, P. Fillard, X. Pennec, N. Ayache, Fast and simple calculus on tensors in the Log-Euclidean framework, in Medical Image Computing and Computer-Assisted Intervention (Springer, Berlin/Heidelberg, 2005), pp. 115–122Google Scholar
  4. 4.
    E. Asma, R. Manjeshwar, K. Thielemans, Theoretical comparison of motion correction techniques for PET image reconstruction, in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), San Diego, 2006, vol. 3, pp. 1762–1767Google Scholar
  5. 5.
    B.B. Avants, P.T. Schoenemann, J.C. Gee, Lagrangian frame diffeomorphic image registration: morphometric comparison of human and chimpanzee cortex. Med. Image Anal. 10(3), 397–412 (2006)Google Scholar
  6. 6.
    W. Bai, M. Brady, Respiratory motion correction in PET images. Phys. Med. Biol. 54, 2719–2736 (2009)Google Scholar
  7. 7.
    W. Bai, M. Brady, Spatio-temporal image registration for respiratory motion correction in PET, in IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, 2009, pp. 426–429Google Scholar
  8. 8.
    W. Bai, M. Brady, Motion correction and attenuation correction for respiratory gated PET images. IEEE Trans. Med. Imaging 30(2), 351–365 (2011)Google Scholar
  9. 9.
    J.L. Barron, D.J. Fleet, S.S. Beauchemin, Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)Google Scholar
  10. 10.
    D. Béréziat, I. Herlin, L. Younes, A generalized optical flow constraint and its physical interpretation, in IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, 2000, vol. 2, pp. 487–492Google Scholar
  11. 11.
    T. Beyer, G. Antoch, T. Blodgett, L.F. Freudenberg, T. Akhurst, S. Mueller, Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur. J. Nucl. Med. Mol. Imaging 30, 588–596 (2003)Google Scholar
  12. 12.
    M. Blume, Joint Image and Motion Reconstruction for Positron Emission Tomography. PhD thesis, Technische Universität München, 2011Google Scholar
  13. 13.
    M. Blume, A. Martinez-Möller, A. Keil, N. Navab, M. Rafecas, Joint reconstruction of image and motion in gated positron emission tomography. IEEE Trans. Med. Imaging 29(11), 1892–1906 (2010)Google Scholar
  14. 14.
    M. Blume, N. Navab, M. Rafecas, Joint image and motion reconstruction for PET using a B-spline motion model. Phys. Med. Biol. 57(24), 8249–8270 (2012)Google Scholar
  15. 15.
    F.A Bornemann, P. Deuflhard, The cascadic multigrid method for elliptic problems. Numer. Math. 75(2), 135–152 (1996)Google Scholar
  16. 16.
    J. Brewer, Kronecker products and matrix calculus in system theory. IEEE Trans. Circuits Syst. 25(9), 772–781 (1978)MathSciNetzbMATHGoogle Scholar
  17. 17.
    C. Broit, Optimal Registration of Deformed Images. PhD thesis, University of Pennsylvania, Philadelphia, 1981Google Scholar
  18. 18.
    L.G. Brown, A survey of image registration techniques. ACM Comput. Surv. 24(4), 325–376 (1992)Google Scholar
  19. 19.
    A. Bruhn, J. Weickert, C. Schnörr, Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int. J. Comput. Vis. 61, 211–231 (2005)Google Scholar
  20. 20.
    C. Brune, 4D Imaging in Tomography and Optical Nanoscopy. PhD thesis, University of Münster, 2010Google Scholar
  21. 21.
    C. Buerger, C. Tsoumpas, A. Aitken, A.P. King, P. Schleyer, V. Schulz, P.K. Marsden, T. Schaeffter, Investigation of MR-based attenuation correction and motion compensation for hybrid PET/MR. IEEE Trans. Nucl. Sci. 59(5), 1967–1976 (2012)Google Scholar
  22. 22.
    M. Burger, J. Modersitzki, L. Ruthotto, A hyperelastic regularization energy for image registration. SIAM J. Sci. Comput. 35(1), B132–B148 (2013)MathSciNetzbMATHGoogle Scholar
  23. 23.
    F. Büther, M. Dawood, L. Stegger, F. Wübbeling, M. Schäfers, O. Schober, K.P. Schäfers, List mode-driven cardiac and respiratory gating in PET. J. Nucl. Med. 50(5), 674–681 (2009)Google Scholar
  24. 24.
    F. Büther, I. Ernst, J. Hamill, H.T. Eich, O. Schober, M. Schäfers, K.P. Schäfers, External radioactive markers for pet data-driven respiratory gating in positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging 40(4), 602–614 (2013)Google Scholar
  25. 25.
    Cardiac planes, Online; Accessed 06 Apr 2014
  26. 26.
    R.E. Carson, Tracer kinetic modeling in PET, in Positron Emission Tomography: Basic Sciences (Springer, New York, 2005), pp. 127–159Google Scholar
  27. 27.
    H. Chang, J.M. Fitzpatrick, A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities. IEEE Trans. Med. Imaging 11(3), 319–329 (1992)Google Scholar
  28. 28.
    P. Charbonnier, L. Blanc-Feraud, G. Aubert, M. Barlaud, Two deterministic half-quadratic regularization algorithms for computed imaging, in IEEE International Conference on Image Processing, Austin, 1994, vol. 2, pp. 168–172Google Scholar
  29. 29.
    S.Y. Chun, T.G. Reese, J. Ouyang, B. Guerin, C. Catana, X. Zhu, N.M. Alpert, G. El Fakhri, MRI-based nonrigid motion correction in simultaneous PET/MRI. J. Nucl. Med. 53(8), 1284–1291 (2012)Google Scholar
  30. 30.
    P.G. Ciarlet, Mathematical Elasticity: Three-Dimensional Elasticity (North Holland, Amsterdam/New York, 1988)zbMATHGoogle Scholar
  31. 31.
    T. Corpetti, É. Mémin, P. Pérez, Dense motion analysis in fluid imagery, in European Conference on Computer Vision, Copenhagen (Springer, 2002), pp. 676–691Google Scholar
  32. 32.
    M. Dawood, Respiratory Motion Correction on 3D Positron Emission Tomography Images. PhD thesis, University of Münster, 2008Google Scholar
  33. 33.
    M. Dawood, C. Brune, F. Büther, X. Jiang, M. Burger, O. Schober, M. Schäfers, K.P. Schäfers, A continuity equation based optical flow method for cardiac motion correction in 3D PET data, in Medical Image Computing and Computer-Assisted Intervention, vol. 6326 (Springer, Berlin/Heidelberg, 2010), pp. 88–97Google Scholar
  34. 34.
    M. Dawood, F. Büther, X. Jiang, K.P. Schäfers, Respiratory motion correction in 3-D PET data with advanced optical flow algorithms. IEEE Trans. Med. Imaging 27(8), 1164–1175 (2008)Google Scholar
  35. 35.
    M. Dawood, F. Büther, N. Lang, O. Schober, K.P. Schäfers, Respiratory gating in positron emission tomography: a quantitative comparison of different gating schemes. Med. Phys. 34(7), 3067–3076 (2007)Google Scholar
  36. 36.
    M. Dawood, F. Büther, L. Stegger, X. Jiang, O. Schober, M. Schäfers, K.P. Schäfers, Optimal number of respiratory gates in positron emission tomography: a cardiac patient study. Med. Phys. 36(5), 1775–1784 (2009)Google Scholar
  37. 37.
    M. Dawood, F. Gigengack, X. Jiang, K.P. Schäfers, A mass conservation-based optical flow method for cardiac motion correction in 3D-PET. Med. Phys. 40(1), 012505 (2013)Google Scholar
  38. 38.
    M. Dawood, X. Jiang, K. Schäfers (eds.), Correction Techniques in Emission Tomography. Series in Medical Physics and Biomedical Engineering (CRC, Boca Raton, 2012)Google Scholar
  39. 39.
    N. Dikaios, D. Izquierdo-Garcia, M.J. Graves, V. Mani, Z.A. Fayad, T.D. Fryer, MRI-based motion correction of thoracic PET: initial comparison of acquisition protocols and correction strategies suitable for simultaneous PET/MRI systems. Eur. Radiol. 22(2), 439–446 (2012)Google Scholar
  40. 40.
    M. Droske, M. Rumpf, A variational approach to nonrigid morphological image registration. SIAM J. Appl. Math. 64(2), 668–687 (2003)MathSciNetGoogle Scholar
  41. 41.
    Y.E. Erdi, S.A. Nehmeh, T. Mulnix, J.L. Humm, C.C. Watson, PET performance measurements for an LSO-based combined PET/CT scanner using the national electrical manufacturers association NU 2-2001 standard. J. Nucl. Med. 45(5), 813–821 (2004)Google Scholar
  42. 42.
    Y.E. Erdi, S.A. Nehmeh, T. Pan, A. Pevsner, K.E. Rosenzweig, G. Mageras, E.D. Yorke, H. Schoder, W. Hsiao, O.D. Squire, P. Vernon, J.B. Ashman, H. Mostafavi, S.M. Larson, J.L. Humm, The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J. Nucl. Med. 45(8), 1287–1292 (2004)Google Scholar
  43. 43.
    M. Fieseler, F. Gigengack, X. Jiang, K.P. Schäfers, Motion correction of whole-body PET data with a joint PET-MRI registration functional. BioMed. Eng. Online 13(1), S2 (2014)Google Scholar
  44. 44.
    M. Fieseler, T. Kosters, F. Gigengack, H. Braun, H.H. Quick, K.P. Schäfers, X. Jiang, Motion correction in PET-MRI: a human torso phantom study, in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Valencia, 2011, pp. 3586–3588Google Scholar
  45. 45.
    M. Fieseler, H. Kugel, F. Gigengack, T. Kösters, F. Büther, H.H. Quick, C. Faber, X. Jiang, K.P. Schäfers, A dynamic thorax phantom for the assessment of cardiac and respiratory motion correction in PET/MRI: a preliminary evaluation. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 702, 59–63 (2013)Google Scholar
  46. 46.
    L. Fin, P. Bailly, J. Daouk, M.-E. Meyer, Motion correction based on an appropriate system matrix for statistical reconstruction of respiratory-correlated PET acquisitions. Comput. Methods Programs Biomed. 96(3), e1–e9 (2009)Google Scholar
  47. 47.
    B. Fischer, J. Modersitzki, Fast diffusion registration. AMS Contemp. Math. Inverse Probl. Image Anal. Med. Imaging 313, 117–129 (2002)MathSciNetGoogle Scholar
  48. 48.
    B. Fischer, J. Modersitzki, Ill-posed medicine—an introduction to image registration. Inverse Probl. 24, 034008 (2008)MathSciNetGoogle Scholar
  49. 49.
    F. Gigengack, M. Fieseler, D. Tenbrinck, X. Jiang, Image processing techniques in emission tomography, in Correction Techniques in Emission Tomography. Series in Medical Physics and Biomedical Engineering (Taylor & Francis, London, 2012), pp. 119–156Google Scholar
  50. 50.
    F. Gigengack, L. Ruthotto, M. Burger, C.H. Wolters, X. Jiang, K.P. Schäfers, Motion correction of cardiac PET using mass-preserving registration, in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Knoxville, 2010, pp. 3317–3319Google Scholar
  51. 51.
    F. Gigengack, L. Ruthotto, M. Burger, C.H. Wolters, X. Jiang, K.P. Schäfers, Motion correction in dual gated cardiac PET using mass-preserving image registration. IEEE Trans. Med. Imaging 31(3), 698–712 (2012)Google Scholar
  52. 52.
    F. Gigengack, L. Ruthotto, X. Jiang, M. Burger, J. Modersitzki, C.H. Wolters, K.P. Schäfers, Vampire,
  53. 53.
    F. Gigengack, L. Ruthotto, X. Jiang, J. Modersitzki, M. Burger, S. Hermann, K.P. Schäfers, Atlas-based whole-body PET-CT segmentation using a passive contour distance, in Proceedings of MICCAI Workshop on Medical Computer Vision, Nice (Springer, 2012), pp. 82–92Google Scholar
  54. 54.
    F. Gigengack, L. Ruthotto, T. Kösters, X. Jiang, J. Modersitzki, M. Burger, C.H. Wolters, K.P. Schäfers, Pipeline for motion correction in dual gated PET, in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Anaheim, 2012Google Scholar
  55. 55.
    P.E. Gill, W. Murray, M.H. Wright, Practical Optimization (Academic, London, 1981)zbMATHGoogle Scholar
  56. 56.
    G.W. Goerres, C. Burger, E. Kamel, B. Seifert, A.H. Kaim, A. Buck, T.C. Buehler, G.K. von Schulthess, Respiration-induced attenuation artifact at PET/CT: technical considerations. Radiology 226(3), 906–910 (2003)Google Scholar
  57. 57.
    V. Gorbunova, J. Sporring, P. Lo, M. Loeve, H.A. Tiddens, M. Nielsen, A. Dirksen, M. de Bruijne, Mass preserving image registration for lung CT. Med. Image Anal. 16, 786–795 (2012)Google Scholar
  58. 58.
    B. Guérin, S. Cho, S.Y. Chun, X. Zhu, N.M. Alpert, G. El Fakhri, T. Reese, C Catana, Nonrigid PET motion compensation in the lower abdomen using simultaneous tagged-MRI and PET imaging. Med. Phys. 38, 3025 (2011)Google Scholar
  59. 59.
    E. Haber, J. Modersitzki, Numerical methods for volume preserving image registration. Inverse Probl. 20, 1621–1638 (2004)MathSciNetzbMATHGoogle Scholar
  60. 60.
    E. Haber, J. Modersitzki, Image registration with guaranteed displacement regularity. Int. J. Comput. Vis. 71(3), 361–372 (2007)Google Scholar
  61. 61.
    J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations (Yale University Press, New Haven, 1923)zbMATHGoogle Scholar
  62. 62.
    J.J. Hamill, V.Y. Panin, TOF-MLAA for attenuation correction in thoracic PET/CT, in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Anaheim, 2012, pp. 4040–4047Google Scholar
  63. 63.
    M. Holden, A review of geometric transformations for nonrigid body registration. IEEE Trans. Med. Imaging 27(1), 111–128 (2008)Google Scholar
  64. 64.
    B.K.P. Horn, B.G. Schunck, Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)Google Scholar
  65. 65.
    H.M. Hudson, R.S. Larkin, Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13(4), 601–609 (1994)Google Scholar
  66. 66.
    B.F. Hutton, M. Braun, L. Thurfjell, D.Y. Lau, Image registration: an essential tool for nuclear medicine. Eur. J. Nucl. Med. 29(4), 559–577 (2002)Google Scholar
  67. 67.
    D. Ionascu, S.B. Jiang, S. Nishioka, H. Shirato, R.I. Berbeco, Internal-external correlation investigations of respiratory induced motion of lung tumors. Med. Phys. 34(10), 3893–903 (2007)Google Scholar
  68. 68.
    M.W. Jacobson, J.A. Fessler, Joint estimation of image and deformation parameters in motion-corrected PET, in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Portland, 2003, vol. 5, pp. 3290–3294Google Scholar
  69. 69.
    S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P.M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A.F. Chatziioannou, Y. Choi, Y.H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S.J. Glick, C.J. Groiselle, D. Guez, P.-F. Honore, S. Kerhoas-Cavata, A.S. Kirov, V. Kohli, M. Koole, M. Krieguer, D.J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M.C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F.R. Rannou, M. Rey, D.R. Schaart, C.R. Schmidtlein, L. Simon, T.Y. Song, J.-M. Vieira, D. Visvikis, R. Van de Walle, E. Wieërs, C. Morel, GATE: a simulation toolkit for PET and SPECT. Phys. Med. Biol. 49(19), 4543–4561 (2004)Google Scholar
  70. 70.
    A.L. Kesner, G. Abourbeh, E. Mishani, R. Chisin, S. Tshori, N. Freedman, Gating, enhanced gating, and beyond: information utilization strategies for motion management, applied to preclinical PET. EJNMMI Res. 3(1), 29 (2013)Google Scholar
  71. 71.
    G.J. Klein, Forward deformation of PET volumes using material constraints, in IEEE Workshop on Biomedical Image Analysis, Santa Barbara, 1998, pp. 64–71Google Scholar
  72. 72.
    G.J. Klein, Forward deformation of PET volumes using non-uniform elastic material constraints, in Information Processing in Medical Imaging (Springer, New York, 1999), pp. 358–363Google Scholar
  73. 73.
    J.K. Klein, R.H. Huesman, Four dimensional processing of deformable cardiac PET data. Med. Image Anal. 6(1), 29–46 (2002)Google Scholar
  74. 74.
    G.J. Klein, B.W. Reutter, M.H. Ho, J.H. Reed, R.H. Huesman, Real-time system for respiratory-cardiac gating in positron tomography. IEEE Trans. Nucl. Sci. 45(4), 2139–2143 (1998)Google Scholar
  75. 75.
    G.J. Klein, B.W. Reutter, R.H. Huesman, Non-rigid summing of gated PET via optical flow, in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Anaheim, 1996, vol. 2Google Scholar
  76. 76.
    T. Kokki, H. Sipilä, M. Teräs, T. Noponen, N. Durand-Schaefer, R. Klén, J. Knuuti, Dual gated PET/CT imaging of small targets of the heart: method description and testing with a dynamic heart phantom. J. Nucl. Cardiol. 17, 71–84 (2009)Google Scholar
  77. 77.
    T. Kösters, K.P. Schäfers, F. Wübbeling, EMrecon,
  78. 78.
    T. Kösters, K.P. Schäfers, F. Wübbeling, EMrecon: an expectation maximization based image reconstruction framework for emission tomography data, in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Valencia, 2011Google Scholar
  79. 79.
    F. Lamare, T. Cresson, J. Savean, C. Cheze Le Rest, A.J. Reader, D. Visvikis, Respiratory motion correction for PET oncology applications using affine transformation of list mode data. Phys. Med. Biol. 52(1), 121–140 (2007)Google Scholar
  80. 80.
    F. Lamare, M.J. Ledesma Carbayo, T. Cresson, G. Kontaxakis, A. Santos, C.C. Le Rest, A.J. Reader, D. Visvikis, List-mode-based reconstruction for respiratory motion correction in PET using non-rigid body transformations. Phys. Med. Biol. 52(17), 5187–5204 (2007)Google Scholar
  81. 81.
    F. Lamare, M. Teras, T. Kokki, H. Fayad, O. Rimoldi, P.G. Camici, J. Knuuti, D. Visvikis, Correction of respiratory motion in dual gated cardiac imaging in PET/CT, in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Dresden, 2008, pp. 5264–5269Google Scholar
  82. 82.
    N. Lang, M. Dawood, F. Büther, O. Schober, M. Schäfers, K.P. Schäfers, Organ movement reduction in PET/CT using dual-gated list-mode acquisition. Z. Med. Phys. 16(1), 93–100 (2006)Google Scholar
  83. 83.
    L. Li, Y. Yang, Optical flow estimation for a periodic image sequence. IEEE Trans. Image Process. 19(1), 1–10 (2010)MathSciNetGoogle Scholar
  84. 84.
    T. Li, B. Thorndyke, E. Schreibmann, Y. Yang, L. Xing, Model-based image reconstruction for four-dimensional PET. Med. Phys. 33(5), 1288–1298 (2006)Google Scholar
  85. 85.
    D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503–528 (1989)MathSciNetzbMATHGoogle Scholar
  86. 86.
    B.D. Lucas, T. Kanade, An iterative image registration technique with an application to stereo vision, in Proceedings of 7th International Joint Conference on Artificial Intelligence, Vancouver, 1981, pp. 674–679Google Scholar
  87. 87.
    G. Lucignani, Respiratory and cardiac motion correction with 4D PET imaging: shooting at moving targets. Eur. J. Nucl. Med. Mol. Imaging 36(2), 315–319 (2009)Google Scholar
  88. 88.
    J.B. Maintz, M.A. Viergever, A survey of medical image registration. Med. Image Anal. 2(1), 1–36 (1998)Google Scholar
  89. 89.
    B.A. Mair, D.R. Gilland, J. Sun, Estimation of images and nonrigid deformations in gated emission CT. IEEE Trans. Med. Imaging 25(9), 1130–1144 (2006)Google Scholar
  90. 90.
    T. Mäkelä, P. Clarysse, O. Sipilä, N. Pauna, Q.C. Pham, T. Katila, I.E. Magnin, A review of cardiac image registration methods. IEEE Trans. Med. Imaging 21(9), 1011–1021 (2002)Google Scholar
  91. 91.
    T. Marin, J.G. Brankov, Deformable left-ventricle mesh model for motion-compensated filtering in cardiac gated SPECT. Med. Phys. 37(10), 5471–5481 (2010)Google Scholar
  92. 92.
    A. Martinez-Möller, D. Zikic, R. Botnar, R. Bundschuh, W. Howe, S. Ziegler, N. Navab, M. Schwaiger, S. Nekolla, Dual cardiac–respiratory gated PET: implementation and results from a feasibility study. Eur. J. Nucl. Med. Mol. Imaging 34, 1447–1454 (2007)Google Scholar
  93. 93.
    B. McCane, K. Novins, D. Crannitch, B. Galvin, On benchmarking optical flow. Comput. Vis. Image Underst. 84(1), 126–143 (2001)zbMATHGoogle Scholar
  94. 94.
    J. Modersitzki, Numerical Methods for Image Registration (Oxford University Press, New York, 2004)zbMATHGoogle Scholar
  95. 95.
    J. Modersitzki, FAIR: Flexible Algorithms for Image Registration (SIAM, Philadelphia, 2009)Google Scholar
  96. 96.
    Y. Nakamoto, B.B. Chin, C. Cohade, M. Osman, M. Tatsumi, R.L. Wahl, PET/CT: artifacts caused by bowel motion. Nucl. Med. Commun. 25(3), 221–225 (2004)Google Scholar
  97. 97.
    R. Narayanan, J.A. Fessler, H. Park, C.R. Meyer, Diffeomorphic nonlinear transformations: a local parametric approach for image registration, in Information Processing in Medical Imaging (Springer, New York, 2005), pp. 174–185Google Scholar
  98. 98.
    S.A. Nehmeh, Y.E. Erdi, Respiratory motion in positron emission tomography/computed tomography: a review. Clin. Occup. Environ. Med. 38(3), 167–176 (2008)Google Scholar
  99. 99.
    A. Neumaier, Solving ill-conditioned and singular linear systems: a tutorial on regularization. SIAM Rev. 40(3), 636–666 (1998)MathSciNetzbMATHGoogle Scholar
  100. 100.
    J. Nocedal, S.J. Wright, Numerical Optimization (Springer, New York, 2000)Google Scholar
  101. 101.
    G. Noetscher, S.N. Makarov, N. Clow, Modeling accuracy and features of body-area networks with out-of-body antennas at 402 MHz. IEEE Antennas Propag. Mag. 53(4), 118–143 (2011)Google Scholar
  102. 102.
    J. Nuyts, G. Bal, F. Kehren, M. Fenchel, C. Michel, C. Watson, Completion of a truncated attenuation image from the attenuated PET emission data. IEEE Trans. Med. Imaging 32(2), 237–246 (2013)Google Scholar
  103. 103.
    J. Nuyts, P. Dupont, S. Stroobants, R. Benninck, L. Mortelmans, P. Suetens, Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE Trans. Med. Imaging 18(5), 393–403 (1999)Google Scholar
  104. 104.
    J. Olesch, L. Ruthotto, H. Kugel, S. Skare, B. Fischer, C.H. Wolters, A variational approach for the correction of field-inhomogeneities in EPI sequences, in SPIE Medical Imaging Conference, San Diego, 2010Google Scholar
  105. 105.
    M.M. Osman, C. Cohade, Y. Nakamoto, L.T. Marshall, J.P. Leal, R.L. Wahl, Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. J. Nucl. Med. 44(2), 240–243 (2003)Google Scholar
  106. 106.
    M.M. Osman, C. Cohade, Y. Nakamoto, R.L. Wahl, Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur. J. Nucl. Med. Mol. Imaging 30, 603–606 (2003)Google Scholar
  107. 107.
    X. Pennec, R. Stefanescu, V. Arsigny, P. Fillard, N. Ayache, Riemannian elasticity: a statistical regularization framework for non-linear registration, in Medical Image Computing and Computer-Assisted Intervention (Springer, Berlin/Heidelberg, 2005), pp. 943–950Google Scholar
  108. 108.
    Y. Petibon, J. Ouyang, X. Zhu, C. Huang, T.G. Reese, S.Y. Chun, Q. Li, G. El Fakhri, Cardiac motion compensation and resolution modeling in simultaneous PET-MR: a cardiac lesion detection study. Phys. Med. Biol. 58(7), 2085 (2013)Google Scholar
  109. 109.
    M. Phelps, PET: Molecular Imaging and Its Biological Applications (Springer, New York, 2004)Google Scholar
  110. 110.
    I. Polycarpou, C. Tsoumpas, P.K. Marsden, Analysis and comparison of two methods for motion correction in PET imaging. Med. Phys. 39, 6474–6483 (2012)Google Scholar
  111. 111.
    F. Qiao, T. Pan, J.W. Clark Jr., O.R. Mawlawi, A motion-incorporated reconstruction method for gated PET studies. Phys. Med. Biol. 51(15), 3769–3783 (2006)Google Scholar
  112. 112.
    M. Reyes, G. Malandain, P.M. Koulibaly, M.A. González-Ballester, J. Darcourt, Model-based respiratory motion compensation for emission tomography image reconstruction. Phys. Med. Biol. 52(12), 3579–3600 (2007)Google Scholar
  113. 113.
    A. Rezaei, M. Defrise, G. Bal, C. Michel, M. Conti, C. Watson, J. Nuyts, Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans. Med. Imaging 31(12), 2224–2233 (2012)Google Scholar
  114. 114.
    C. Rischpler, S.G. Nekolla, I. Dregely, M. Schwaiger, Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J. Nucl. Med. 54(3), 402–415 (2013)Google Scholar
  115. 115.
    T. Rohlfing, Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable. IEEE Trans. Med. Imaging 31(2), 153–163 (2012)Google Scholar
  116. 116.
    D. Ruan, J.A. Fessler, J.M. Balter, R.I. Berbeco, S. Nishioka, H. Shirato, Inference of hysteretic respiratory tumor motion from external surrogates: a state augmentation approach. Phys. Med. Biol. 53(11), 2923 (2008)Google Scholar
  117. 117.
    D. Rueckert, P. Aljabar, R.A. Heckemann, J.V. Hajnal, A. Hammers, Diffeomorphic registration using B-splines, in Medical Image Computing and Computer-Assisted Intervention, ed. by R. Larsen, M. Nielsen, J. Sporring. Volume 4191 of LNCS (Springer, Berlin/Heidelberg, 2006), pp. 702–709Google Scholar
  118. 118.
    L. Ruthotto, Mass-Preserving Registration of Medical Images. German diploma thesis (Mathematics), Institute for Computational and Applied Mathematics, University of Münster, 2010Google Scholar
  119. 119.
    L. Ruthotto, F. Gigengack, M. Burger, C.H. Wolters, X. Jiang, K.P. Schäfers, J. Modersitzki, A simplified pipeline for motion correction in dual gated cardiac PET, in Bildverarbeitung für die Medizin (Springer, Berlin/Heidelberg, 2012), pp. 51–56Google Scholar
  120. 120.
    K.C. Schmidt, F.E. Turkheimer, Kinetic modeling in positron emission tomography. Q. J. Nucl. Med. 46(1), 70–85 (2002)Google Scholar
  121. 121.
    H. Schumacher, J. Modersitzki, B. Fischer, Combined reconstruction and motion correction in SPECT imaging. IEEE Trans. Nucl. Sci. 56, 73–80 (2009)Google Scholar
  122. 122.
    A.J. Schwarz, M.O. Leach, Implications of respiratory motion for the quantification of 2D MR spectroscopic imaging data in the abdomen. Phys. Med. Biol. 45(8), 2105–2116 (2000)Google Scholar
  123. 123.
    W.P. Segars, M. Mahesh, T.J. Beck, E.C. Frey, B.M.W. Tsui, Realistic CT simulation using the 4d XCAT phantom. Med. Phys. 35(8), 3800–3808 (2008)Google Scholar
  124. 124.
    L.A. Shepp, Y. Vardi, Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1(2), 113–122 (1982)Google Scholar
  125. 125.
    D. Sun, S. Roth, M.J. Black. A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis. 106(2), 115–137 (2014)Google Scholar
  126. 126.
    D. Tenbrinck, S. Schmid, X. Jiang, K.P. Schäfers, J. Stypmann, Histogram-based optical flow for motion estimation in ultrasound imaging. J. Math. Imaging Vis. 47(1–2), 138–150 (2013)zbMATHGoogle Scholar
  127. 127.
    M. Teräs, T. Kokki, N. Durand-Schaefer, T. Noponen, M. Pietilä, J. Kiss, E. Hoppela, H. Sipilä, J. Knuuti, Dual-gated cardiac PET–clinical feasibility study. Eur. J. Nucl. Med. Mol. Imaging 37, 505–516 (2010)Google Scholar
  128. 128.
    K. Thielemans, E. Asma, R.M. Manjeshwar, Mass-preserving image registration using free-form deformation fields, in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Orlando, 2009Google Scholar
  129. 129.
    H. Ue, H. Haneishi, H. Iwanaga, K. Suga, Nonlinear motion correction of respiratory-gated lung SPECT images. IEEE Trans. Med. Imaging 25(4), 486–495 (2006)Google Scholar
  130. 130.
    A. Van Der Gucht, B. Serrano, F. Hugonnet, B. Paulmier, N. Garnier, M. Faraggi, Impact of a new respiratory amplitude-based gating technique in evaluation of upper abdominal PET lesions. Eur. J. Radiol. 83(3), 509–515 (2014)Google Scholar
  131. 131.
    W. van Elmpt, J. Hamill, J. Jones, D. De Ruysscher, P. Lambin, M. Öllers, Optimal gating compared to 3D and 4D PET reconstruction for characterization of lung tumours. Eur. J. Nucl. Med. Mol. Imaging 38, 843–855 (2011)Google Scholar
  132. 132.
    T. Vercauteren, X. Pennec, A. Perchant, N. Ayache, Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1), S61–S72 (2009)Google Scholar
  133. 133.
    D. Visvikis, O. Barret, T.D. Fryer, F. Lamare, A. Turzo, Y. Bizais, C.C. Le Rest, Evaluation of respiratory motion effects in comparison with other parameters affecting PET image quality, in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Rome, 2004, vol. 6, pp. 3668–3672Google Scholar
  134. 134.
    Y. Wang, E. Vidan, G.W. Bergman, Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology 213(3), 751–758 (1999)Google Scholar
  135. 135.
    J. Weickert, A. Bruhn, T. Brox, N. Papenberg, A Survey on Variational Optic Flow Methods for Small Displacements. Volume 10 of Mathematics in Industry (Springer, Berlin, 2006), pp. 103–136Google Scholar
  136. 136.
    C. Würslin, H. Schmidt, P. Martirosian, C. Brendle, A. Boss, N.F. Schwenzer, L. Stegger, Respiratory motion correction in oncologic PET using T1-weighted MR imaging on a simultaneous whole-body PET/MR system. J. Nucl. Med. 54(3), 464–471 (2013)Google Scholar
  137. 137.
    D. Yang, H. Li, D.A. Low, J.O. Deasy, I. El Naqa, A fast inverse consistent deformable image registration method based on symmetric optical flow computation. Phys. Med. Biol. 53(21), 6143 (2008)Google Scholar
  138. 138.
    Y. Yin, E.A. Hoffman, C.L. Lin, Mass preserving nonrigid registration of CT lung images using cubic B-spline. Med. Phys. 36(9), 4213–4222 (2009)Google Scholar
  139. 139.
    B. Zitova, J. Flusser, Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Fabian Gigengack
    • 1
  • Xiaoyi Jiang
    • 1
  • Mohammad Dawood
    • 2
  • Klaus P. Schäfers
    • 2
  1. 1.Department of Mathematics and Computer ScienceUniversity of MünsterMünsterGermany
  2. 2.European Institute for Molecular ImagingUniversity of MünsterMünsterGermany

Personalised recommendations